RP Infrastructure

Stage 1 and Stage 2 Site Contamination Assessment

Tamworth Health Service Redevelopment: On-grade Carparks

Dean Street, Tamworth

Report No. RGS32576.1-AR Rev.1 22 February 2023

Manning-Great Lakes
Port Macquarie
Coffs Harbour

RGS32576.1-AR Rev.1

22 February 2023

RP Infrastructure Level 19, 9 Hunter Street SYDNEY NSW 2300

Attention: Yonis Ahmad

Dear Yonis

RE: Tamworth Health Service Redevelopment: On-grade Carparks – Dean Street, Tamworth

Stage 1 and Stage 2 Site Contamination Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a Stage 1 and Stage 2 Site Contamination Assessment for the proposed on-grade carparks that are located at two locations within Tamworth Hospital at Dean Street, Tamworth NSW.

The assessment found that both locations are suitable for the proposed development in their current state from a contamination perspective.

The work presented herein was reviewed by Dr David Tully CEnvP SC. A copy of Dr Tully's letter pertaining to the review is appended to the report.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

Reviewed by

Andre Stary

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Andrew Hills

Senior Geotechnical Engineer Senior Environmental Engineer

Louis Davidson

Table of Contents

1	INT	RO	DUCTION	1
	1.1	В	Background	1
	1.2		Objectives	2
	1.3	S	Scope of Works	2
	1.4	S	ite Identification	2
2	SITE	E DI	escription	4
	2.1	T	opography and Drainage	4
	2.2		Geology	!
	2.2	2.1	Northern Site	[
	2.2	2.2	Southern Site	[
	2.3	F	Hydrogeology	!
	2.4	S	ite History	ć
	2.4	1.1	Historical Aerial Photography	ć
	2.4	1.2	Site Observations	8
	2.4	1.3	NSW EPA Records	10
	2.4	1.4	Land Title Search	
	2.4	1.5	Site History Summary	1 1
3	FIE	LD ,	AND LABORATORY INVESTIGATIONS	
	3.1	S	Sampling Plan	11
	3.2	F	ield Work	12
	3.2	2.1	Laboratory Analysis	12
	3.3	Г	Data Quality Objectives	12
4	GL	JIDE	ELINES AND ASSESSMENT CRITERIA	14
5	QL	JALI	ITY ASSURANCE / QUALITY CONTROL	15
6	RES	SUL	TS	1
	6.1	.1	Subsurface Conditions	1
	6.1	.2	Laboratory Results	17
	6.2		Conceptual Site Model	17
	6.2	2.1	Potential Sources of Contamination	17
	6.2	2.2	Potential Exposure Pathways and Receptors	18
	6.3	С	Discussion	19
	6.4		Conclusions and Recommendations	20
7	1.14	ΛIT Λ	2IAOIT.	20

Figures

Figure 1 Site Location Plan

Figure 2 Site Layout Plan

Figure 3 Sample Location Plan: Northern Site
Figure 4 Sample Location Plan: Southern Site

Appendices

Appendix A Site History DocumentationAppendix B Results of Field InvestigationsAppendix C Laboratory Test Result Sheets

Appendix D Letter from Dr David Tully CEnvP SC

1 INTRODUCTION

1.1 Background

Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken Stage 1 and Stage 2 Site Contamination Assessments (SCA) for the proposed on-grade carparks at two locations within Tamworth Hospital at Dean Street, Tamworth NSW.

It is understood that two new on-grade carparks are being considered to accommodate the car spaces that will be lost in association with the A2 Banksia Unit development that is located in the northern portion of the hospital complex. The proposed development areas are illustrated below.

Diagram 1: Proposed on-grade carparks shaded blue. The A2 Banksia Unit development is shaded yellow.

The hospital site is identified as Lot 1 DP 1181268 and occupies approximately 20 hectares. The two subject portions of the site consist of the northern site which occupies an area of approximately

2,000m², and the southern site which occupies an area of approximately 3,500m². The layout of the subject areas are illustrated above and in the attached figures.

The Stage 1 and Stage 2 site contamination assessment is required to evaluate past and present potentially contaminating activities and contamination types and to assess the site's suitability for the proposed development from a contamination perspective.

1.2 Objectives

The objectives of the SCA were to:

- Characterise the nature and extent of soil contamination present at the two locations (if any);
- Assess the suitability of the sites for the proposed development; and
- Provide recommendations for on-site management, the need and options for remediation and any further investigation and testing that is required.

1.3 Scope of Works

In accordance with the relevant sections of the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), the assessment involved the following process:

- A brief study of site history, with the aim of identifying past activities on or near the site that might have the potential to cause contamination;
- Review of available recent and historical aerial photography for the last 50 years;
- A search of NSW EPA records, or contaminated land notifications on the site;
- Government records of groundwater bores in the area;
- Site walkover to assess visible surface conditions and identify evidence of contamination, or past activities that may cause contamination;
- Using the above information, characterise the sites into Areas of Environmental Concern, in which the potential for contamination has been identified, and nominate Chemicals of Concern that might be associated with those activities;
- Undertake targeted sampling and analysis at the selected Areas of Concern to evaluate the presence and extent of contamination (if any);
- Analyse samples for a suite of potential contaminants associated with the past activities;
 and
- Evaluate the results against industry accepted criteria for residential land use with minimal
 opportunities for soil access (Residential B land use guideline criteria have been adopted for
 this assessment as a conservative measure).

1.4 Site Identification

General site information is provided below in Table 1. The site location is shown in Figure 1.

Table 1: Summary of Site Details

Site location:	Dean Street, Tamworth		
Approximate site area:	20 Hectares (total site) 2,000m² (proposed northern on-grade carpark) 3,500m² (proposed southern on-grade carpark)		
Title Identification Details:	Lot 1 DP 1181268		
Current Ownership:	Health Administration Corporation		
Current Landuse:	Healthcare facility (hospital)		
Proposed Landuse:	Ongoing healthcare facility		
Adjoining Site Uses:	 Within hospital, northern: North, Aged Care Assessment Team East, hospital buildings and existing on-grade carpark South, rehabilitation ward West, access road/existing on-grade carpark Within hospital, southern: North, hospital building East, vacant land South, Johnston Street West, existing on-grade carpark Surrounding area: Vacant land to the north South of Johnston Street, Tamwell Medical Centre and residential properties East of Smith Street, vacant land/carparks West of Dean Street, Tamworth Correctional Centre 		
Government Area:	Tamworth Regional Council		

2 SITE DESCRIPTION

2.1 Topography and Drainage

The sites are located within Tamworth Hospital, off Dean Street, Tamworth.

The sites are located within undulating residual topography on a south facing hill. The surrounding slopes generally grades at about 5° to 8° .

The northern site is located on the mid slope of the south facing hill. Some cut/fill earthworks have been undertaken to create flat pads for the two masonry buildings located to the east of the proposed development area. Vegetation comprises grass and scattered trees, and there is a small garden bed in the southwest corner.

The southern site is located on the foot slopes of the south facing hill. The area is vacant. There is an on-grade sealed carpark to the north and a hospital building to the northeast. Vegetation comprises grass and scattered trees. There is a large garden bed in the southwest corner that is mulched and comprise a variety of small to large trees.

2.2 Geology

Reference to the 1:250,000 Geology Map of Tamworth indicates that the subject site is underlain by the Moore Creek Limestone Member that comprises cherty argillite, limestone, greywacke, and mudstone.

The materials encountered during the investigation are summarised below. Further details are presented on the attached engineering logs (Appendix B).

2.2.1 Northern Site

Fill: Gravelly CLAY and Silty CLAY, medium plasticity, fine to coarse

grained, with some cobbles up to 150mm in size to depths ranging

from 0.3m to 1.0m;

Topsoil: Gravelly CLAY, medium plasticity, fine grained angular gravel, with

some roots to a depth of 0.2m (TP-N3 only);

Colluvial Soil: Silty CLAY and Gravelly CLAY, medium plasticity, fine to medium

grained angular gravel, very stiff to hard to at least 1.4m.

2.2.2 Southern Site

Fill: Gravelly CLAY and Silty Sandy CLAY, medium plasticity, with some

fragments of foreign material including wire, broken tiles, timber, and

concrete to depths ranging from 0.35m to 0.7m;

Topsoil: Clayey SILT, with rootlets to a depth of 0.3m (TP-S3 only);

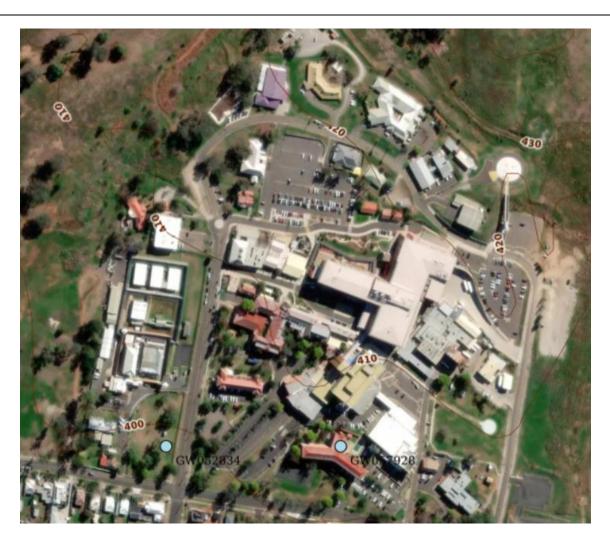
Colluvial Soil: Silty CLAY and Gravelly CLAY, medium plasticity, fine to medium

grained angular gravel, very stiff to hard to at least 1.2m in TP-S1 to

TP-S3; overlying

EW to HW Siltstone: SILTSTONE, very low to low strength, highly fractured to at least 1.0m

(encountered in TP-S4 only).


2.3 Hydrogeology

A groundwater bore search on the NSW Water Information website, http://waterinfo.nsw.gov.au/gw/ indicates there is a licenced groundwater bore (GW057928) located within the hospital approximately 50m northeast of the southern site. The drill records indicate a water bearing zone of 26.2m to 26.5m. There is an additional bore (GW052834) located

to the west that recorded a water bearing zone of 24.5m to 34m. The bore locations are shown on Diagram 2 below.

Based on RGS' experience in the region, regional groundwater depth in this area is typically about 10m below ground surface in the vicinity of the hospital.

Diagram 2: Licensed groundwater bores located within the hospital complex to the east of the southern site and to the west of the hospital.

2.4 Site History

2.4.1 Historical Aerial Photography

Available aerial photographs of the site were reviewed to assist in identifying past land uses that may contribute to site contamination. The results of the review are summarised in Table 2.

Table 2 - Aerial Photograph Summary

Year	Site	Surrounding Land
1976	The hospital site has been developed with some buildings similar to the existing hospital layout. The northern and southern sites are vacant. The carpark to the northeast and building to the northwest have already been constructed.	Land surrounding the hospital is occupied by residential developments to the south and west. Vacant to the north and east.
1984	A carpark has been constructed to the east of the northern site. Southern site is unchanged.	Additional/upgrades to hospital buildings have been undertaken. Surrounding area is similar to the previous photograph.
1989	Building constructed to the south of the northern site. Southern site is unchanged.	Minor upgrades to hospital roads and buildings, and increased vegetation. Surrounding area is similar to the previous photograph.
2013 (Google Earth)	New buildings constructed in northern portion of the northern site and directly to the east, and carpark to the west. Demountable building has been placed in the northeast corner of the southern site. Entries to the adjacent carpark have been constructed off Johnston Street and Dean Street.	New buildings constructed/upgraded around hospital. Continued residential developments to the south and west of the hospital. Carpark and other earthworks undertaken to the east.
2015 (Google Earth)	Both sites similar to the previous photograph.	Upgrades in hospital roads and buildings. Area surrounding the hospital is simar to the previous photograph.
February 2016 (Google Earth)	Building upgrades directly to east of the northern site. Entries roads removed from carpark next to southern site.	Similar to the previous.
October 2017 (Google Earth)	Building in northern portion of the northern site demolished/removed. Southern site similar to previous.	Similar to the previous.

March 2020	Northern site similar to previous.	
(Google Earth_	Demountable building removed from the southern site.	
2022 (Google Earth)	Minor variation in vegetation. Grass has grown over the pad where the demountable building was located in the southern site.	Similar to the previous.

2.4.2 Site Observations

Field work was undertaken on 28 September 2022. Observations from a contamination perspective made during the site visit are summarised below:

- Both northern and southern sites are vegetated with grass, minor cut/fill earthworks have been undertaken in both locations;
- Some buried materials including wire, broken tiles, timber, and concrete were observed in some test pits excavated in the southern site including TP-S1, TP-S2, and TP-S4;
- No other visual (such as oil staining) or olfactory evidence of contamination was observed;
- No materials suspected of being Asbestos Containing Materials (ACM) were identified.

A selection of images of the northern and southern sites are presented below.

Cut/fill in northern section of the northern site.

Looking north over the southern portion of the northern site.

Existing building adjacent to the southern portion of the northern site.

Existing building adjacent to the northern portion of the northern site.

Looking west over the southern site where the demountable building was previously located.

Looking northeast over the southern site.

Wire encountered in TP-\$1.

Broken concrete encountered in TP-S1.

Wire and timber encountered in TP-S2.

Broken tile recovered from TP-S2.

2.4.3 NSW EPA Records

A check with the NSW Office of Environment and Heritage website (www.environment.nsw.gov.au) revealed that no notices have been issued on the site under the Contaminated Land Management Act (1997).

2.4.4 Land Title Search

A list of past registered proprietors and trustees of the site was obtained from the Land Titles Office. A summary of the title details is included in Appendix A.

The title history search revealed the following:

Philip Gidley King

David Williamson Irvine

	Nathan Cohen
	Daniel Regan
	Thomas Matthew Newman
	(Trustees of Public Hospital Tamworth)
1931 – 1931	Thomas Matthew Newman
	(Trustee of Public Hospital Tamworth)
1931 – 1991	The Tamworth District Hospital
1991 – 1998	The Tamworth Base Hospital
1998 – 2013	New England Health Services
	(Formerly The Tamworth Base Hospital)
2013 – to date	Health Administration Corporation

2.4.5 Site History Summary

Based on available data the chronological development of the site is summarised below:

- The land has been owed by the hospital or trustees of the hospital since 1882;
- The general layout of the hospital and some of the existing hospital buildings were constructed prior to 1976;
- Some buildings and carparks have been constructed and upgraded in the vicinity of both locations;
- A building (constructed post 1989) was located in the northern portion of the northern site and was demolished between 2016 and 2017;
- Entries to the carpark adjacent to the southern site previously went through the site but were removed and revegetated between 2015 and 2016; and
- A demountable building was located in the northeast corner of the southern site between 2013 and 2020.

3 FIELD AND LABORATORY INVESTIGATIONS

3.1 Sampling Plan

The NSW EPA (2022) Sampling design part 1 - application recommend a minimum of 8 sampling locations to characterise a site of 2,000m² (northern site) and a minimum of 10 sampling locations to characterise a site of 3,500m² (northern site) by systematic sampling.

Based on the above, 36 soil samples (18 jar samples and 18 bag samples) were collected from 18 test pits.

3.2 Field Work

Field work for the assessment was undertaken on 28 September 2022 and included:

- Site walkover to assess visible surface conditions and identify evidence of contamination, or past activities that may cause contamination (if any);
- The excavation of four test pits with a 5 tonne excavator, designated TP-N1 to TP-N4 and four additional shallow test pits with hand tools from the northern site;
- The excavation of five test pits with a 5 tonne excavator, designated TP-S1 to TP-S5 and five additional shallow test pits with hand tools from the southern site;
- The test pits were logged and sampled by a Senior Geotechnical Engineer from RGS.

The locations of the sampling points are shown on Figure 3 and Figure 4. They were obtained on site and located by measurement relative to existing site features.

Soil samples were taken from the fill and the underlying natural material using disposable gloves sampling out of the centre of the excavator bucket. The samples were collected in acid-rinsed 250mL glass jars and zip lock bags and placed in an ice-chilled cooler box.

3.2.1 Laboratory Analysis

Samples were transported under chain-of-custody conditions to ALS Laboratory Group and Environmental Analysis Laboratory, Southern Cross University, NATA accredited specialist chemical testing laboratories, to be analysed for the following suite of contaminants:

- Polycyclic Aromatic Hydrocarbons (PAH);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethyl-benzene, Xylenes (BTEX);
- Organochlorine and Organophosphorus Pesticides (OC/OPs);
- Heavy metals (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, and zinc);
- Polychlorinated Biphenyls (PCB); and
- Presence and quantification of asbestos.

The results are presented in Appendix C.

3.3 Data Quality Objectives

The Data Quality Objectives (DQOs) are presented in Table 3.

Table 3 – Data Quality Objectives

DQO	Details of Process			
State the Problem	A Stage 1 and Stage 2 SCA is required to assess the suitability of the sites for the proposed on-grade carparks from a contamination perspective.			
Identify the Decision	 The principal study questions that are: What is the nature and extent of soil contamination on the subject land (if any)?; and Is the land suitable for the proposed hospital carpark redevelopment from a contamination viewpoint? 			
Identify Inputs to the Decision	 The primary inputs are: Site history study; Site walkover assessment; Chemical analysis of selected soil samples; and Results summary. 			
Define the Boundary of the Assessment	 The spatial boundaries are limited to the proposed on-grade carpark boundaries as shown on Figure 2; The investigation and screening levels for a Residential B land use scenario (limited access to soil) as a conservative measure. 			
Develop a Decision Rule	 If concentrations of contaminants in soil exceed the adopted investigation and screening levels for a Residential B land use scenario (as a conservative measure), then further assessment may be required; Decision criteria for QA/QC measures are defined in Section 5. A decision on the acceptance of analytical data will be made on the basis of the data quality indicators (DQIs) in the context of precision, accuracy, representativeness, completeness and comparability (PARCC) parameters as follows: Precision: NATA registered laboratories were used following NATA endorsed methods. An appropriate number of intralaboratory and inter-laboratory samples were collected and analysed (following ASC NEPM guidance), the results of which are considered to be satisfactory; Accuracy: The laboratory limit or reporting (LOR) was appropriate for the screening criteria utilised. NATA registered laboratories were used following NATA endorsed methods including appropriate method blanks, laboratory control samples, laboratory spikes and duplicates the results of which 			

	 Representativeness – The samples were received by the laboratories in good condition. The data obtained is considered to be representative of the soils present on site; Completeness – Experienced field staff were utilised to undertake the sampling and keep appropriate documentation. Samples were in proper custody between the field and reaching the laboratory. The laboratories performed the tests requested. The data obtained from the field investigations is considered to be relevant and usable; and Comparability – Sample holding times were met and samples were properly and adequately preserved. Field sampling and handling procedures were followed. The data collected is considered to be comparable.
Specify Acceptable Limits on Decision Errors	 Acceptable limits for QA/QC measures are defined in Section 5; Acceptable investigation and screening levels are those for a Residential B land use scenario; and Specific limits are in accordance with the appropriate NSW EPA guidelines including indicators of data quality and standard procedures for field sampling and handling.
Optimise the Design for Obtaining Data	Based on the above steps of the DQO process. The design for obtaining the required data (i.e., proposed field and laboratory investigations) is presented in Section 3.1.

4 GUIDELINES AND ASSESSMENT CRITERIA

Assessment as outlined in NSW EPA Guidelines for Consultants Reporting on Contaminated Land (2020).

To evaluate results, and for guidance on assessment requirements, the assessment adopted the guidelines provided in the National Environment Protection (Assessment of Site Contamination) Measure as amended in 2013 (NEPM 2013). The NEPM document provides a range of guidelines for assessment of contaminants for various land use scenarios.

The proposed future land use is for an ongoing rural healthcare facility. As such, comparison with the NEPM guideline Health Investigation and Screening Levels for Residential B (high rise buildings and apartments with limited access to soil) land use is considered appropriate for this site as a conservative measure. In accordance with the NEPM guideline the following criteria were adopted for this assessment:

- Health Investigation Levels (HILs) for Residential 'B' land use (HIL-B) were used to assess the
 potential human health impact of heavy metals and polycyclic aromatic hydrocarbons
 (PAHs);
- Health Screening Levels (HSLs) for coarse textured (sand) or fine textured (silt and clay) soils
 on a Residential B site were adopted as appropriate for the soils encountered to assess the
 potential human health impact of petroleum hydrocarbons and benzene, toluene,
 ethylbenzene and xylene (BTEX) compounds;

- Ecological Investigation Levels (EILs) for urban residential and public open space land use were used for evaluation of the potential ecological / environmental impact of heavy metals and PAHs;
- Ecological Screening Levels (ESLs) for coarse textured (sand) soils or fine textured (silt and clay) soils on a Residential B land use site were adopted as appropriate for the soils encountered, to assess the potential ecological / environmental impact of petroleum hydrocarbons and BTEX compounds.

In accordance with NEPM 2013, exceedance of the respective criteria does not necessarily deem that remediation or clean-up is required but is a trigger for further assessment of the extent of contamination and associated risks. The adopted criteria are presented in the results summary table in Appendix C.

5 QUALITY ASSURANCE / QUALITY CONTROL

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination. Sampling equipment was decontaminated between sample locations and a clean pair of nitrile gloves used for the collection of each sample into laboratory supplied glass sampling jars.

Samples were placed on ice on-site and maintained on ice during transport to the testing laboratories. Two duplicate samples were collected and submitted to the laboratory for analysis for quality control purposes as follows:

- Duplicate (N-D1) and Triplicate (N-T1) Replicate of primary sample TP-N4; and
- Duplicate (S-D1) and Triplicate (S-T1) Replicate of primary sample TP-S5.

The Relative Percent Differences (RPDs) were calculated for the duplicate and triplicate samples and are presented in the results summary table in Appendix B.

The duplicate and triplicate RPDs were within the control limit of 40% (with the exception of Arsenic in sample TP-N4 and triplicate sample N-T1) and indicated generally good correlation between the primary and duplicate samples.

It is noted that low analyte concentrations exaggerate the percentage differences with respect to small total concentration differences, therefore where results for the primary, duplicate, and triplicate, were less than 10 times the laboratory limit of reporting (LOR), the RPDs have been disregarded. The RPD for arsenic in sample TP-N4, which exceeded the 40% control limit as outlined above were disregarded on this basis. It is also noted that some elevated levels of TRH and PAH compounds were found in triplicate sample S-T1 analysed at the secondary laboratory and not in the primary sample, however, the levels were below the LOR of the primary laboratory.

In addition to the field quality control procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix C.

All laboratory quality control data is within acceptable limits for the tests carried out. Therefore, on the basis of the results of the field and laboratory quality control procedures and testing, the data is considered to reasonably represent the concentrations of contaminants in the soils at the sample locations at the time of sampling and the results can be adopted for this assessment.

6 RESULTS

6.1.1 Subsurface Conditions

The soil types recorded in surface samples are summarised below in Table 4.

Table 4: Summary of Subsurface Conditions (Surface Samples)

Sample ID	Description
TP-N1 0.05 – 0.1	Fill: Gravelly CLAY
TP-N2 0.05 - 0.1	Fill: Sandy CLAY
TP-N3 0.9 – 1.0	Colluvial Soil: Gravelly CLAY
TP-N4 0.1 – 0.2	Fill: Gravelly CLAY
TP-N5 0.05 – 0.1	Fill: Gravelly CLAY
TP-N6 0.1 – 0.2	Fill: Gravelly CLAY
TP-N7 0.05 – 0.1	Fill: Gravelly CLAY
TP-N8 0.05 - 0.1	Fill: Gravelly CLAY
TP-S1 0.3 – 0.35	Fill: Gravelly CLAY
TP-S2 0.2 – 0.3	Fill: CLAY with gravel
TP-S3 0.1 – 0.2	Topsoil: Clayey SILT
TP-S4 0.1 - 0.2	Fill: Sandy Silty CLAY
TP-S5 0.1 – 0.2	Fill: Gravelly CLAY
TP-S6 0.1 – 0.2	Fill: Sandy CLAY
TP-\$7 0.1 – 0.2	Colluvial Soil: Gravelly CLAY
TP-S8 0.05 – 0.1	Colluvial Soil: Gravelly CLAY
TP-S9 0.1 – 0.2	Colluvial Soil: Gravelly CLAY
TP-S10 0.1 - 0.2	Colluvial Soil: Gravelly CLAY

6.1.2 Laboratory Results

An appraisal of the laboratory test results presented in Appendix C is provided below with reference to the adopted soil investigation and screening levels discussed in Section 4.

- Concentrations of heavy metals were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Residential B site in each of the samples analysed;
- Concentrations of TRH, PAH and BTEX were below the laboratory limit of reporting in each of
 the samples analysed except sample TP-S5 0.1-0.2 that had elevated levels of TRH C₁₆-C₃₄
 fraction, and sample TP-S7 0.1-0.2 that had elevated levels of TRH C₁₆-C₃₄ fraction and TRH
 C₃₄-C₄₀ fraction, however the levels were well below the adopted ecological investigation
 criteria and management limits for a Residential (B) site;
- Concentrations of PCB and OC/OP pesticides were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Residential B site in each of the samples analysed; and
- Asbestos was not detected in the remaining soil samples.

6.2 Conceptual Site Model

Based on the site observations and knowledge obtained about site activities as outlined above, a conceptual site model (CSM) has been developed.

6.2.1 Potential Sources of Contamination

Potential Areas of Environmental Concern (AECs) and Chemicals of Concern (COCs) identified for the assessment are outlined in Table 5 and Table 6.

Table 5: Potential AECs and COCs Northern Site

AEC	Mode of Potential Contamination	Potential COCs	Likelihood of Contamination
AEC1: Soils in the vicinity of structures previously demolished	Potentially hazardous building materials	Lead and asbestos	Moderate
AEC2: Fill from cut to fill earthworks	Importation of potentially contaminated fill	Heavy Metals, TPH, BTEX, PAH, PCB, OC/OPP and asbestos	Low to moderate
AEC3: Vegetated areas	Pesticides used for general landscape upkeep.	OC/OPP	Low to moderate

Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

TPH - Total Petroleum Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbons

PCB – Polychlorinated Biphenyls

OC/OPP - Organochlorine and Organophophorus Pesticides

Table 6: Potential AECs and COCs Southern Site

AEC	Mode of Potential Contamination	Potential COCs	Likelihood of Contamination
AEC1: Soils in the vicinity of demountable building previously located on site	Potentially hazardous building materials	Lead and asbestos	Moderate
AEC2: Fill encountered throughout site	Importation of potentially contaminated fill	Heavy Metals, TPH, BTEX, PAH, PCB, OC/OPP and asbestos	Low to moderate
AEC3: Previously vegetated areas	Pesticides used for general landscape upkeep.	OC/OPP	Low to moderate
AEC4: Previous carpark entry roads Oil spills or fuel spills TPH, BTEX, PAH, Heavy metals			Low to moderate
Heavy Metals - Arsenic, Cadmiur BTEX - Benzene, Toluene, Ethylbe TPH - Total Petroleum Hydrocarbo PAH – Polycyclic Aromatic Hydro PCB – Polychlorinated Biphenyls OC/OPP – Organochlorine and O			

The approximate locations of the AEC's are shown on Figure 3 and Figure 4.

6.2.2 Potential Exposure Pathways and Receptors

Based on the site observations and knowledge obtained about site activities as outlined above, potential exposure pathways and receptors identified for the assessment of both sites are summarised in Table 7.

Table 7: Potential Exposure Pathways and Receptors

Chemicals of Concern	Key Pathways	Key Receptors	
Asbestos, heavy metals	Generation of dust during earthworks which is inhaled	Onsite - Construction and site workers Offsite - Adjacent sites	
Asbestos, heavy metals, TPH, BTEX, PAH, PCB, OC/OPP	Skin contact / ingestion, plant uptake	Onsite - Construction and site workers, future site users, vegetation in landscaped areas	
Heavy Metals, TPH, BTEX, PAH, PCB, OC/OPP	Surface runoff and leaching of soils	Offsite - Surface water ecosystems and users	

Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

TPH - Total Petroleum Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbons

PCB - Polychlorinated Biphenyls

OC/OPP – Organochlorine and Organophophorus Pesticides

6.3 Discussion

A Stage 1 and Stage 2 SCA was required to assess the site's suitability for future development of ongrade carparks in both northern and southern locations from a contamination perspective.

The site history study indicates that the hospital layout has changed several times since initial construction. Some buildings and roads have previously been located in both locations.

Identified AEC's included soils in the vicinity of the structures previously demolished, fill placed for pads for buildings, vegetated areas, and areas of previous carpark entry roads.

No visual or olfactory evidence of contamination (such as oil staining or hydrocarbon odours) were observed, however, some buried materials including wire, broken tiles, timber, and concrete were observed in some test pits excavated in the southern site. No ACM was observed within the test pits or elsewhere across the site. Samples TP-S1 0.3-0.35m, TP-S2 0.2-0.3m, and TP-S4 0.1-0.2m were sampled from the soil surrounding the buried material.

The results of laboratory analysis of surface soil samples collected from four targeted locations (AEC's outlined above), revealed concentrations of the chemicals of concern were either below the laboratory reporting limit, or below the adopted health investigation criteria for a Residential B site.

Some elevated concentrations of TRH above the laboratory reporting limits were encountered in samples obtained from TP-S5 0.05-0.1m (C_{16} - C_{34} fraction) and TP-S7 0.1-0.2m (C_{16} - C_{34} fraction and TRH C_{34} - C_{40} fraction), however, the levels were well below the adopted ecological investigation criteria and management limits for a Residential (B) site.

Asbestos was not detected in any of the soil samples tested.

6.4 Conclusions and Recommendations

Based on the above and the findings of the Stage 1 and Stage 2 site SCA presented herein, the soils tested meets the requirements for a Residential B site as detailed in the NEPM 2013 guidelines and in accordance with 'State Environmental Planning Policy (Resilience and Hazards) 2021' both northern and southern sites are considered suitable for the proposed carpark developments in their current state from a contamination perspective.

Should potential evidence of site contamination be identified during development activities, such as soil staining, buried materials, odours or possible ACM, then a site contamination specialist should be contacted for advice without delay.

7 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Contaminated site investigations are based on data collection, judgment, experience, and opinion. By nature, these investigations are less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

Recommendations regarding ground conditions referred to in this report are estimates based on the information available at the time of its writing. Estimates are influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Reviewed by

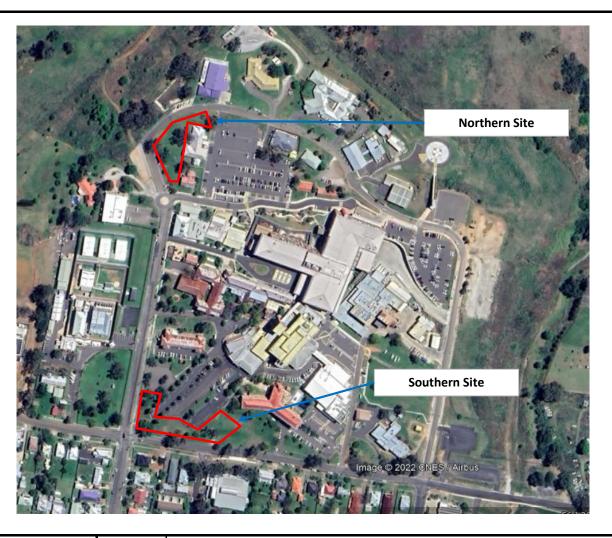
Louis Davidson

Senior Geotechnical Engineer

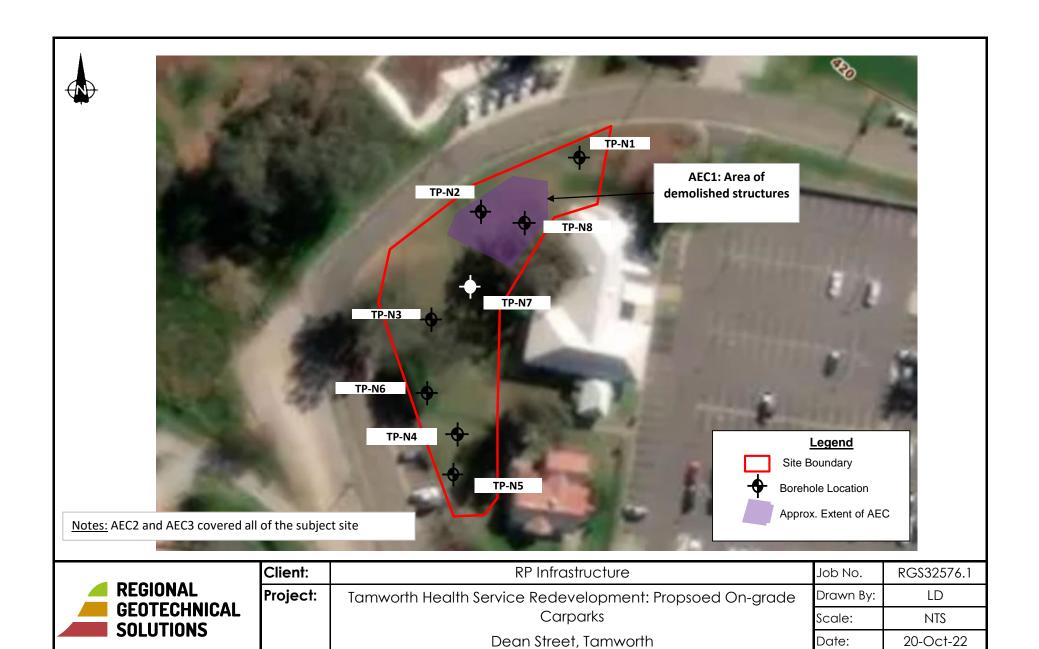
Andrew Hills

Senior Environmental Engineer

Figures



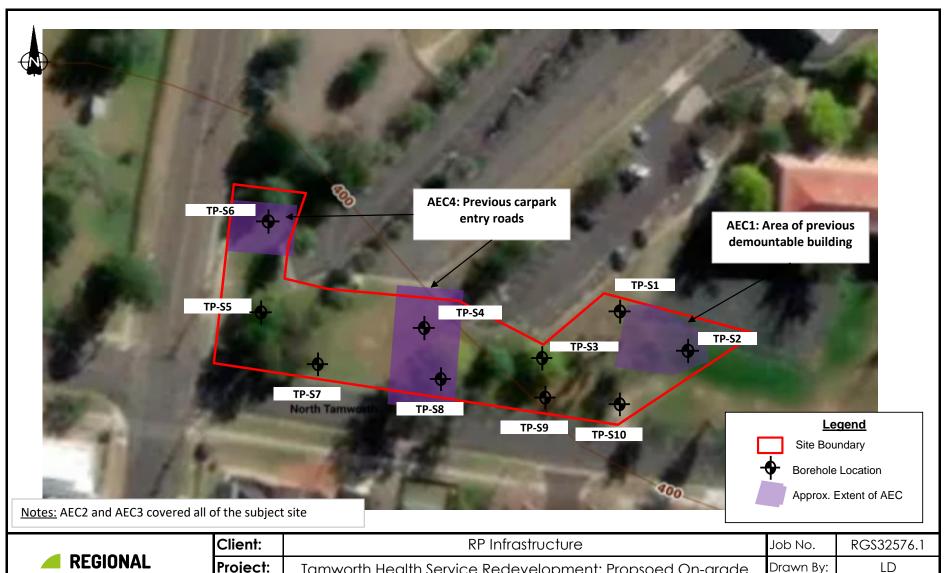
Client:	RP Infrastructure	Job No.	RGS32576.1
Project:	Tamworth Health Service Redevelopment: Propsoed On-grade	Drawn By:	LD
	Carparks	Scale:	NTS
	Dean Street, Tamworth	Date:	20-Oct-22
Title:	Site Location Plan	Drawing No.	Figure 1



REGIONAL
GEOTECHNICAL
SOLUTIONS

С	lient:	RP Infrastructure	Job No.	RGS32576.1
Pı	roject:	Tamworth Health Service Redevelopment: Propsoed On-grade	Drawn By:	LD
		Carparks		NTS
		Dean Street, Tamworth	Date:	20-Oct-22
Ti	tle:	Site Layout Plan	Drawing No.	Figure 2

Sample Location Plan: Northern Site


Title:

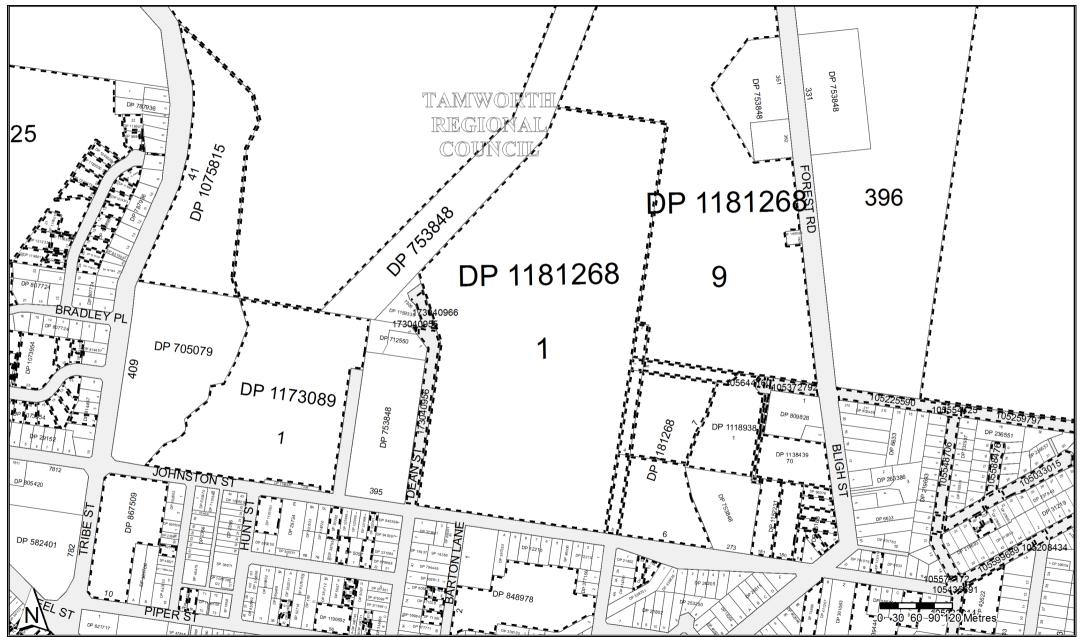
Date:

Drawing No.

20-Oct-22

Figure 3

REGIONAL
GEOTECHNICAL
SOLUTIONS


Client:	RP Infrastructure	Job No.	RGS32576.1
Project:	Tamworth Health Service Redevelopment: Propsoed On-grade	Drawn By:	LD
	Carparks	Scale:	NTS
	Dean Street, Tamworth	Date:	20-Oct-22
Title:	Sample Location Plan: Southern Site	Drawing No.	Figure 34

Appendix A Site History Documentation

Locality: NORTH TAMWORTH
LGA: TAMWORTH REGIONAL

Parish: TAMWORTH
County: INGLIS

Parish: TAMWORTH

Ref: NOUSER

Locality: NORTH TAMWORTH LGA: TAMWORTH REGIONAL County: INGLIS

	Status	Surv/Comp	Purpose
DP5057			
Lot(s): 6 PP1251197	WITHDRAWN	UNAVAILABLE	EASEMENT
Lot(s): 8			_/.C
DP1139570	REGISTERED	SURVEY	REDEFINITION
DP25168			
Lot(s): 2, 3, 4, 5, 6, 8	DECICTEDED	CLIDVEV	CLIDDIVICION
☐ DP1152231 DP322001	REGISTERED	SURVEY	SUBDIVISION
Lot(s): 1			
P1251197	WITHDRAWN	UNAVAILABLE	EASEMENT
DP371028			
Lot(s): 7B	WITHER ANALY		CONCOLIDATION
□ DP1167165	WITHDRAWN	UNAVAILABLE	CONSOLIDATION
DP392344 Lot(s): 6B			
DP1167165	WITHDRAWN	UNAVAILABLE	CONSOLIDATION
DP505056			
Lot(s): 2			
PR000010	WITHDRAWN	UNAVAILABLE	CONSOLIDATION
DP626018 Lot(s): 4			
DP1167052	PRE-ALLOCATED	UNAVAILABLE	REDEFINITION
DP710383			
Lot(s): 2			
P1127918	REGISTERED	SURVEY	SUBDIVISION
DP814457			
Lot(s): 2 P1073954	REGISTERED	SURVEY	SUBDIVISION
DP848978		0011121	
Lot(s): 2			
• •	GE. VILLAS 1-36 SHOWN	IN PLAN WITH MEMORANI	DUM AB21496
DP867509			
Lot(s): 10 P1134688	REGISTERED	SURVEY	EASEMENT
DP1026894			
Lot(s): 251, 252			
DP219693	HISTORICAL	SURVEY	SUBDIVISION
DP1062507			
Lot(s): 61, 62 PP587549	HISTORICAL	COMPILATION	SUBDIVISION
Lot(s): 62			
☐ DP2356	HISTORICAL	COMPILATION	UNRESEARCHED
DP1065791			
Lot(s): 41, 42	LUCTORICAL	CHDVEV	LINDESEADOUED
■ DP362211 DP1073954	HISTORICAL	SURVEY	UNRESEARCHED
Lot(s): 24			
■ DP1140190	REGISTERED	SURVEY	SUBDIVISION
Lot(s): 10, 12, 13, 14, 15, 16, 17			
☐ DP814457	HISTORICAL	SURVEY	SUBDIVISION
Lot(s): 25	HISTORICAL	SURVEY	SUBDIVISION
■ DP778289 DP1075815	TIIOTORICAL	SURVET	SUBDIVISION
Lot(s): 41			
□ DP705079	HISTORICAL	SURVEY	CROWN FOLIO CREATION
DP1081866			
Lot(s): 101, 102, 103	LICTORICAL	CLIDVEV	LINDEGEADOUED
DP5057	HISTORICAL	SURVEY	UNRESEARCHED

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

Ref: NOUSER

Locality:NORTH TAMWORTHParish:TAMWORTHLGA:TAMWORTH REGIONALCounty:INGLIS

		Status		Surv/Comp	Purpose
)P1101001 .ot(s): 1	1				
	DP29734	HISTORICAL		SURVEY	UNRESEARCHED
P1113727					G. W. 2027 W. 33.122
ot(s): 111,					
	DP814457	HISTORICAL		SURVEY	SUBDIVISION
<u>. </u>	DP1073954	HISTORICAL		SURVEY	SUBDIVISION
P1114638	8				
ot(s): 51	DD000405	LUCTODIOAL		OOMBU ATION	0110011/401011
	DP602465	HISTORICAL		COMPILATION	SUBDIVISION
	DP1026417	HISTORICAL		SURVEY	SUBDIVISION
	DP1031338	HISTORICAL		SURVEY	SUBDIVISION
P1118938	8				
ot(s): 1 💷 Γ	DP753848	HISTORICAL		COMPILATION	CROWN ADMIN NO.
	DP1099608	HISTORICAL		SURVEY	ROADS ACT, 1993
	NSW GAZ.	1110101110112	21-09-2007	0011121	Folio : 7235
	LOT 1 DP1099608 - SI	EE AD462184	21 00 2007		1 0110 . 7 200
ot(s): 1, 3					
****	NSW GAZ.		11-07-2008		Folio : 6941
	CLOSED ROAD				
	AD790097 - LOT 3 DP	1118938			
ot(s): 2	NCM CAZ		00 00 0000		Folio : 670
7	NSW GAZ. CLOSED ROAD		08-02-2008		Folio : 672
	LOT 2 DP1118938				
- P1119787					
ot(s): 2	•				
2	NSW GAZ.		22-02-2008		Folio: 1160
	CLOSED ROAD				
	LOT 2 DP1119787				
P1127918 ot(s): 97, 9					
	DP534738	HISTORICAL		SURVEY	SUBDIVISION
P1138439		THOTOTOTAL		CORVET	CODDIVIOION
ot(s): 70					
	DP753848	HISTORICAL		COMPILATION	CROWN ADMIN NO.
<u></u> [DP1118603	HISTORICAL		COMPILATION	CROWN FOLIO CREATION
22	NSW GAZ.		28-12-2007		Folio : 10758
	CLOSED ROAD				
	LOT 1 DP1118603				
P1140190					
ot(s): 221,	, 222 DP814457	HISTORICAL		SURVEY	SUBDIVISION
	DP1073954	HISTORICAL		SURVEY	SUBDIVISION
ا ھے 1152231		THOTORICAL		JUNVLI	SOBDIVISION
ot(s): 181	ı				
	DP1119787	HISTORICAL		COMPILATION	ROADS ACT, 1993
	NSW GAZ.		21-12-2007		Folio : 9993
	CLOSED ROAD				
	LOT 1 DP1119787				
L					
L ot(s): 180,		HISTORICAL		COMPILATION	CROWN ADMIN NO.
L ot(s): 180, [[, 181 DP753848	HISTORICAL		COMPILATION	CROWN ADMIN NO.
ot(s): 180, ot(s): 180 ot(s): 180	, 181 DP753848 NSW GAZ.		16-08-2013		CROWN ADMIN NO. Folio: 3777 AND HOUSING CORPORATION IN HOMES NORTH

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Ref : NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Status Surv/Comp **Purpose** DP1158146 Lot(s): 7304 NSW GAZ. Folio: 2048 22-07-2016 REVOCATION OF RESERVATION OF CROWN LAND RESERVE NO. 96144 - LOTS 435-436 DP1054103 AND LOT 7304 DP1158146 DP1168984 Lot(s): 11, 13, 14, 15, 16 **SUBDIVISION** P787936 **HISTORICAL SURVEY** DP1173089 Lot(s): 1 DP47171 HISTORICAL SURVEY **CROWN FOLIO CREATION** DP753848 **HISTORICAL COMPILATION** CROWN ADMIN NO. DP1055791 HISTORICAL **SURVEY CROWN FOLIO CREATION** P1165492 HISTORICAL **SURVEY** REDEFINITION 01-07-2011 NSW GAZ. Folio: 4697 REVOCATION OF RESERVATION OF CROWN LAND RESERVE NO. 753848 - PART BEING LOTS 405-408 DP47171, LOT 431 DP1055791, LOTS 265, 330 AND 363 DP753848 AND LOT 1 DP1165492 DP1176430 Lot(s): 11, 12 DP356648 HISTORICAL SURVEY UNRESEARCHED DP1181268 Lot(s): 1 DP533835 HISTORICAL **SURVEY** RESUMPTION OR ACQUISITION DP1195542 REGISTERED **SURVEY EASEMENT** Lot(s): 6 RESUMPTION OR ACQUISITION DP1188571 REGISTERED SURVEY Q NSW GAZ 11-10-2013 Folio: 4470 ACQUIRED FOR THE PURPOSES OF THE HEALTH ADMINISTRATION ACT 1982 LOT 61 DP1188571 AND EASEMENTS DESIGNATED (A) AND (B) SHOWN IN DP1188571 Lot(s): 3, 8 DP1175412 HISTORICAL COMPILATION CROWN ROAD ENCLOSURE Lot(s): 2, 9 DP1076546 HISTORICAL COMPILATION DEPARTMENTAL Lot(s): 1, 4, 5, 6, 7 CROWN ADMIN NO. DP753848 HISTORICAL COMPILATION Lot(s): 8 NSW GAZ. 11-05-2012 Folio: 1366 **CLOSED ROAD** LOT 1 DP1175412 NSW GAZ. 22-06-2012 Folio: 2514 ADDITION TO RESERVED CROWN LAND RESERVE NO. 14778 - LOT 1 DP1175412 Lot(s): 1, 2, 3, 4, 5 NSW GAZ. Folio: 5244 21-12-2012 ACQUIRED FOR THE PURPOSES OF THE HEALTH ADMINISTRATION ACT 1982 - LOTS 1-5 DP1181268 DP1185500 Lot(s): 17, 18 DP787936 HISTORICAL **SURVEY** SUBDIVISION DP1168984 HISTORICAL SURVEY SUBDIVISION DP1190692 Lot(s): 56 HISTORICAL DP5057 SURVEY UNRESEARCHED DP408923 **HISTORICAL** SURVEY UNRESEARCHED DP873857 HISTORICAL **COMPILATION** CONSOLIDATION DP1198311 Lot(s): 1 DP24858 HISTORICAL SURVEY UNRESEARCHED

Caution:

DP534738

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

SUBDIVISION

SURVEY

HISTORICAL

Ref : NOUSER

Locality:NORTH TAMWORTHParish:TAMWORTHLGA:TAMWORTH REGIONALCounty:INGLIS

	EGA . TAWWORTH REGION		County . INGLIS
	Status	Surv/Comp	Purpose
Lot(s): 1, 5			
DP416035	HISTORICAL	SURVEY	UNRESEARCHED
DP1199017			
Lot(s): 20, 21, 22, 23, 24	LUCTORICAL	CLIDVEV	CLIDDIVICION
DP787936	HISTORICAL	SURVEY	SUBDIVISION
DP1168984	HISTORICAL	SURVEY	SUBDIVISION
₽ DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1206794			
Lot(s): 251, 252	HISTORICAL	SURVEY	SUBDIVISION
P1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
_	HISTORICAL	SURVEY	SUBDIVISION
□ DP1199017	HISTORICAL	SURVET	SUBDIVISION
DP1212334 Lot(s): 26, 27, 28			
DP787936	HISTORICAL	SURVEY	SUBDIVISION
P1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
_	HISTORICAL	SURVET	SORDIVISION
DP1219373 Lot(s): 29, 30, 32			
DP787936	HISTORICAL	SURVEY	SUBDIVISION
P1168984	HISTORICAL	SURVEY	SUBDIVISION
P1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
_	HISTORICAL	SURVEY	SUBDIVISION
□ DP1212334	HISTORICAL	SURVET	SUBDIVISION
DP1231114 ₋ot(s): 3			
₽ DP6633	HISTORICAL	SURVEY	UNRESEARCHED
DP1233761	1.10.1.01.11.12		
ot(s): 155, 156			
DP21802	HISTORICAL	SURVEY	UNRESEARCHED
DP1243825			
ot(s): 34, 35			
DP787936	HISTORICAL	SURVEY	SUBDIVISION
DP1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
DP1212334	HISTORICAL	SURVEY	SUBDIVISION
DP1219373	HISTORICAL	SURVEY	SUBDIVISION
P1239283	HISTORICAL	SURVEY	SUBDIVISION
DP1248231			
_ot(s): 7, 10			
₽ DP728359	HISTORICAL	SURVEY	SUBDIVISION
DP1078221	HISTORICAL	SURVEY	SUBDIVISION
DP1239283	HISTORICAL	SURVEY	SUBDIVISION
.ot(s): 10			
DP807724	HISTORICAL	SURVEY	SUBDIVISION
ot(s): 7			
MSW GAZ.	18-05-20		Folio : 2604
			MPENSATION) ACT, 1991; DECLARATION PURSUAN B LOT 411 DP728359. ERRATUM GOV. GAZ. 1-6-2001
NSW GAZ.	04-07-20 OF RESERVATION OF CROWI		Folio : 2587).

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

753848 - LOT 33 DP1078221

Ref: NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

		Status	Surv/Comp	Purpose
SP39444				
🦳 S	P76794	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
🦳 S	P76795	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
S	P76796	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP42622				
S	P92944	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP71381				
🖳 D	P599841	HISTORICAL	COMPILATION	SUBDIVISION
🖳 D	P1060436	HISTORICAL	SURVEY	REDEFINITION
SP74886				
🖳 D	P411207	HISTORICAL	SURVEY	UNRESEARCHED
🖳 D	P1082072	HISTORICAL	SURVEY	REDEFINITION
SP79603				
🖳 D	P1117945	HISTORICAL	SURVEY	CONSOLIDATION
SP83382				
Q D	P367939	HISTORICAL	SURVEY	UNRESEARCHED
🖳 D	P1139570	HISTORICAL	SURVEY	REDEFINITION
SP96078				
_	P25168	HISTORICAL	SURVEY	UNRESEARCHED
🖳 D	P1234151	HISTORICAL	SURVEY	REDEFINITION
SP98897				
Q D	P787936	HISTORICAL	SURVEY	SUBDIVISION
🖳 D	P1168984	HISTORICAL	SURVEY	SUBDIVISION
🖳 D	P1185500	HISTORICAL	SURVEY	SUBDIVISION
D	P1199017	HISTORICAL	SURVEY	SUBDIVISION
📮 D	P1212334	HISTORICAL	SURVEY	SUBDIVISION
<u> </u>	P1219373	HISTORICAL	SURVEY	SUBDIVISION
Road				
Polygon Id(s	s): 105033014			
- The state of the	NSW GAZ.	07-06-2019	Fo	ilio : 1861
		N ROAD TO COUNCIL SHADED RED IN THE DIA	GRAM ACCOMPANYING THIS	GAZETTE NOTIFICATION
	s): 105644160			
	P1099608	HISTORICAL	SURVEY	ROADS ACT, 1993
Polygon Id(s	s): 105010105, 105372°	792, 105644160		
	NSW GAZ.	05-05-2006	Fo	lio : 2709

TRANSFER OF CROWN ROAD TO COUNCIL

Polygon Id(s): 173040955, 173040956, 173040966

NSW GAZ. 03-07-2015 Folio: 2042

NSW GAZ. 03-07-2015
TRANSFER OF CROWN ROAD TO COUNCIL

Polygon Id(s): 105033015, 105208434, 105225589, 105225590, 105259797, 105361269, 105435691, 105543025, 105548706,

105554425, 105577172, 105582842, 105588476, 105599689

EX-SUR 68/34 DP978236

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL ACTIVITY PRIOR TO SEPTEMBER 2002** you must refer to the RGs Charting and Reference Maps.

Ref : NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Plan	Surv/Comp	Purpose
	·	·
DP189	COMPILATION	UNRESEARCHED
DP2356	COMPILATION	UNRESEARCHED
DP5057 DP5674	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP5674 DP5733	SURVEY	UNRESEARCHED UNRESEARCHED
DP5733 DP6633	SURVEY	UNRESEARCHED
DP12210	SURVEY	UNRESEARCHED
DP18200	SURVEY	UNRESEARCHED
DP21802	SURVEY	UNRESEARCHED
DP24811	SURVEY	UNRESEARCHED
DP25168	SURVEY	UNRESEARCHED
DP25555	SURVEY	UNRESEARCHED
DP26205	SURVEY	UNRESEARCHED
DP29152 DP29514	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP29734	SURVEY	UNRESEARCHED
DP31219	SURVEY	UNRESEARCHED
DP44204	COMPILATION	CROWN FOLIO CREATION
DP214117	SURVEY	SUBDIVISION
DP219693	SURVEY	SUBDIVISION
DP232936	SURVEY	SUBDIVISION
DP232937	SURVEY	SUBDIVISION
DP236551	SURVEY	SUBDIVISION
DP236557 DP237949	SURVEY	SUBDIVISION
DP237949 DP239079	SURVEY SURVEY	SUBDIVISION SUBDIVISION
DP253250	SURVEY	SUBDIVISION
DP257195	SURVEY	CROWN FOLIO CREATION
DP263313	SURVEY	SUBDIVISION
DP263386	SURVEY	SUBDIVISION
DP301063	SURVEY	UNRESEARCHED
DP308731	SURVEY	UNRESEARCHED
DP308749	SURVEY	UNRESEARCHED
DP321998 DP321999	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP321999 DP322000	SURVEY	UNRESEARCHED
DP322001	SURVEY	UNRESEARCHED
DP331064	SURVEY	UNRESEARCHED
DP337477	SURVEY	UNRESEARCHED
DP338466	SURVEY	UNRESEARCHED
DP338731	SURVEY	UNRESEARCHED
DP339193	SURVEY	UNRESEARCHED
DP339836 DP355838	COMPILATION SURVEY	UNRESEARCHED UNRESEARCHED
DP362211	SURVEY	UNRESEARCHED
DP367939	SURVEY	UNRESEARCHED
DP369706	SURVEY	UNRESEARCHED
DP371028	SURVEY	UNRESEARCHED
DP371899	SURVEY	UNRESEARCHED
DP373601	SURVEY	UNRESEARCHED
DP375099	SURVEY	UNRESEARCHED
DP377106 DP377551	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP377551 DP381712	SURVEY	UNRESEARCHED
DP385488	SURVEY	UNRESEARCHED
DP392344	SURVEY	UNRESEARCHED
DP397253	COMPILATION	UNRESEARCHED
DP398004	SURVEY	UNRESEARCHED
DP401533	SURVEY	UNRESEARCHED
DP402646	SURVEY	UNRESEARCHED
DP405009	SURVEY	UNRESEARCHED
DP411207	SURVEY	UNRESEARCHED
DP414261	COMPILATION SUBVEY	UNRESEARCHED
DP414920 DP500251	SURVEY SURVEY	UNRESEARCHED SUBDIVISION
	SURVET	
Caution:	This information is provided as a searching aid only. Whilst ever	ery endeavour is made the ensure that current map. plan and

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

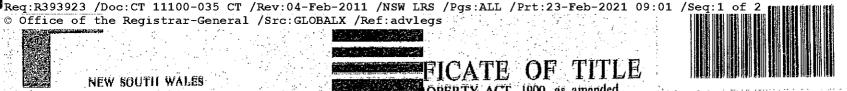
Ref: NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Plan	Surv/Comp	Purpose
DP500255	SURVEY	SUBDIVISION
DP502813	SURVEY	SUBDIVISION
DP505056	COMPILATION	SUBDIVISION
DP509962	SURVEY	SUBDIVISION
DP514596	SURVEY	SUBDIVISION
DP515933	SURVEY	SUBDIVISION
DP521675	SURVEY	SUBDIVISION
DP529855	SURVEY	SUBDIVISION
DP547777	SURVEY	SUBDIVISION
DP577771	SURVEY	SUBDIVISION
DP582401	SURVEY	SUBDIVISION
DP599841	COMPILATION	SUBDIVISION
DP602489	SURVEY	SUBDIVISION
DP602802	SURVEY	SUBDIVISION
DP621717	SURVEY	SUBDIVISION
DP624629	COMPILATION	CONSOLIDATION
DP625470	COMPILATION	CONSOLIDATION
DP626018	COMPILATION	CONSOLIDATION
DP701079	SURVEY	SUBDIVISION
DP705077	COMPILATION	CROWN FOLIO CREATION
DP705079	SURVEY	CROWN FOLIO CREATION
DP710383	COMPILATION	SUBDIVISION
DP711064	COMPILATION	CONSOLIDATION
DP712550	SURVEY	SUBDIVISION
DP753848	COMPILATION	CROWN ADMIN NO.
DP787936	SURVEY	SUBDIVISION
DP794449	COMPILATION	SUBDIVISION
DP805420	COMPILATION	SUBDIVISION
DP805420 DP807724		SUBDIVISION
	SURVEY	
DP809261	SURVEY	SUBDIVISION
DP809828	SURVEY	SUBDIVISION
DP814457	SURVEY	SUBDIVISION
DP817048	SURVEY	SUBDIVISION
DP831763	SURVEY	SUBDIVISION
DP837819	SURVEY	SUBDIVISION
DP843333	SURVEY	SUBDIVISION
DP845242	SURVEY	SUBDIVISION
DP848978	SURVEY	SUBDIVISION
DP850962	SURVEY	SUBDIVISION
DP851503	SURVEY	SUBDIVISION
DP867509	SURVEY	CONSOLIDATION
DP879868	SURVEY	SUBDIVISION
DD0 40007	COMPILATION	
DP940397		UNRESEARCHED
DP940398	COMPILATION	UNRESEARCHED
DP1026894	SURVEY	SUBDIVISION
DP1062507	SURVEY	SUBDIVISION
DP1065252	SURVEY	SUBDIVISION
DP1065791	SURVEY	SUBDIVISION
DP1067396	SURVEY	SUBDIVISION
DP1073954	SURVEY	SUBDIVISION
DP1075815	SURVEY	SUBDIVISION
DP1081866	SURVEY	SUBDIVISION
DP1101001	COMPILATION	CONSOLIDATION
DP1113727	SURVEY	SUBDIVISION
DP1114638	SURVEY	SUBDIVISION
DP1118938	SURVEY	ROADS ACT, 1993
DP1119787	COMPILATION	ROADS ACT, 1993
DP1123106	SURVEY	SUBDIVISION
DP1123106 DP1127918	SURVEY	SUBDIVISION
DP1138439	COMPILATION	CONSOLIDATION
DP1140190	SURVEY	SUBDIVISION
DP1140190	UNRESEARCHED	SUBDIVISION
DP1152231	SURVEY	SUBDIVISION
DP1152231	UNRESEARCHED	SUBDIVISION
DP1158146	COMPILATION	CROWN LAND CONVERSION
DP1159323	COMPILATION	CROWN LAND CONVERSION
Caution:	This information is provided as a searching aid only. Whilst every	endeavour is made the ensure that current man, plan and

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.


Ref: NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Plan	Surv/Comp	Purpose
DP1159337	COMPILATION	CROWN LAND CONVERSION
DP1159338	COMPILATION	CROWN LAND CONVERSION
DP1168984	SURVEY	SUBDIVISION
DP1168984	UNRESEARCHED	SUBDIVISION
DP1173089	SURVEY	CONSOLIDATION
DP1176430	SURVEY	SUBDIVISION
DP1181268	SURVEY	RESUMPTION OR ACQUISITION
DP1185500	SURVEY	SUBDIVISION
DP1190692	COMPILATION	CONSOLIDATION
DP1198311	SURVEY	SUBDIVISION
DP1198311	UNRESEARCHED	SUBDIVISION
DP1199017	SURVEY	SUBDIVISION
DP1199449	SURVEY	CONSOLIDATION
DP1199449	UNRESEARCHED	CONSOLIDATION
DP1206794	SURVEY	SUBDIVISION
DP1212334	SURVEY	SUBDIVISION
DP1219373	SURVEY	SUBDIVISION
DP1231114	SURVEY	REDEFINITION
DP1233761	SURVEY	REDEFINITION
DP1233761	UNRESEARCHED	REDEFINITION
DP1243825	SURVEY	SUBDIVISION
DP1248231	SURVEY	SUBDIVISION
SP18355	COMPILATION	STRATA PLAN
SP18437	COMPILATION	STRATA PLAN
SP18925	COMPILATION	STRATA PLAN
SP30550	COMPILATION	STRATA PLAN
SP37260	COMPILATION	STRATA PLAN
SP38671	COMPILATION	STRATA PLAN
SP39444	COMPILATION	STRATA PLAN
SP42622	COMPILATION	STRATA PLAN
SP46006	COMPILATION	STRATA PLAN
SP47818	COMPILATION	STRATA PLAN
SP48021	COMPILATION	STRATA PLAN
SP48479	COMPILATION	STRATA PLAN
SP52716	COMPILATION	STRATA PLAN
SP71381	COMPILATION	STRATA PLAN
SP74886	COMPILATION	STRATA PLAN
SP79603	COMPILATION	STRATA PLAN
SP83382	COMPILATION	STRATA PLAN
SP96078	COMPILATION	STRATA PLAN
SP96078	UNRESEARCHED	STRATA PLAN
SP98897	COMPILATION	STRATA PLAN
SP98897	UNRESEARCHED	STRATA PLAN

OHICE

© Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

NEW SOUTH WALES

Prior Title (Crown Grant) Volume 4517 Folio 90

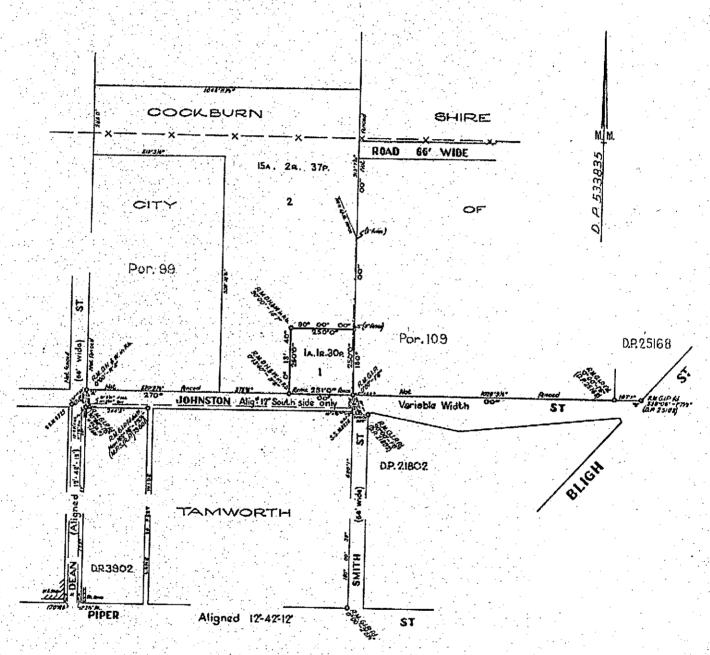
11100

Edition issued 22-7-1969

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule

Witness

AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON


AUTIONED

L' bolliver

Registrar General.

PLAN SHOWING LOCATION OF LAND

SEE AUTO FOLIO

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 533835 in the City of Tamworth and Shire of EXCEPTING THEREOUT the minerals reserved Cockburn Parish of Tamworth and County of Inglis. by the Crown Grants.

FIRST SCHEDULE

THE TAMWORTH BASE MOSPITAL TAMWORTH DISTRICT HOSPITAL

7-1-1970 CRM

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to.

Registrar General.

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

g:R393923 Office of	the	Re	gi	111 str	00- ar-	-03! -Gei	5 C	Γ /I	Rev: /Src	04- ::GI	Feb OBA	-20 LX	11 /Re	/NS	w L dvl	RS /	'Pgs	:AL	L /1	Prt	23-	-Feb	>-20)21	09:	01	/Sec	1:2	of	2					
	Signature of Registrar General		Angelia - in the institute Angelia and institute of institute of Angelia and institute of the institute of t				Comment of the Section Continues of the Comments of the Commen	to a garage and the same and th	make valegoment karminerajer day is menukan	And the state of t		and the second s	The property of the state of th																			a de la companya de l		And a second sec	
	ENTERED		A Commanda of Special Matter No. 100 and Special Section of the Spec							and the second s		pro a strain to an many to memorancy repair					CANCELLATION																	The page of the second	
	DATE		man pure defendent de " Valleger une product Amperio, e p. une des							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		to dame of transfer or the very data of the very transfer to the party of the latest transfer to the latest transfer transfer to the latest transfer trans	The state of the s																				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a top (Laser) department of the control of the cont	
	INSTRUMENT		de Apparent is serie de la participa de la parente del														Signature of Registrar General																1		
	NATURE		Angle 14 of the Control of the Contr					management replication of the state of the s			The state of the s						ENTERED										*			The state of the s					
FIRST SCHEDULE (continued)															《新·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯	SECOND SCHEDULE (continued)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		
	REGISTERED PROPRIETOR											a verification of the second s					PARTICULARS																		
	REG		pe was a had make palamana shappinan ay mali wy probleg probleg probleg was a probleg probleg problem. ————————————————————————————————————						1	Alternativement of the best of the control of the best of the second of the second of the control of the contro	The comment of the contract of						100	-											o = 24.		ту, Таба байгона		Property and the control of the cont		
										The second of th	due to the state of the state o	SEE AUTO EDINO					INSTRUMENT																taganini yara kasa mahiyisingada da ishinda salam parkaranda gayinindanda ma'asa da salamasanganinta	e delige, minis de ser est de emission en en est de se de des de des en	

Lol 32

00111

loV.

(Page 2 of 2 pages)

NEW SOUTH WALES

Prior Title (Crown Grant) Volume 4517 Folio 90

11118 Fol.

Edition issued 12-8-1969 L319524

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

10 3

L. bolliver

Registrar General.

PLAN SHOWING LOCATION OF LAND

all Auto Follo

SHIRE Por. 99 Por. 109 DP.25168 JOHNSTON Alige 12 South side Variable Width DP. 21802 TAMWORTH DR3902 Aligned 12-42-12

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 1 in Deposited Plan 533835 in the City of Tamworth Shire of Cockburn Parish of Tamworth and County of Inglis EXCEPTING THEREOUT the minerals reserved by the Crown Grant.

Reg. Gen.

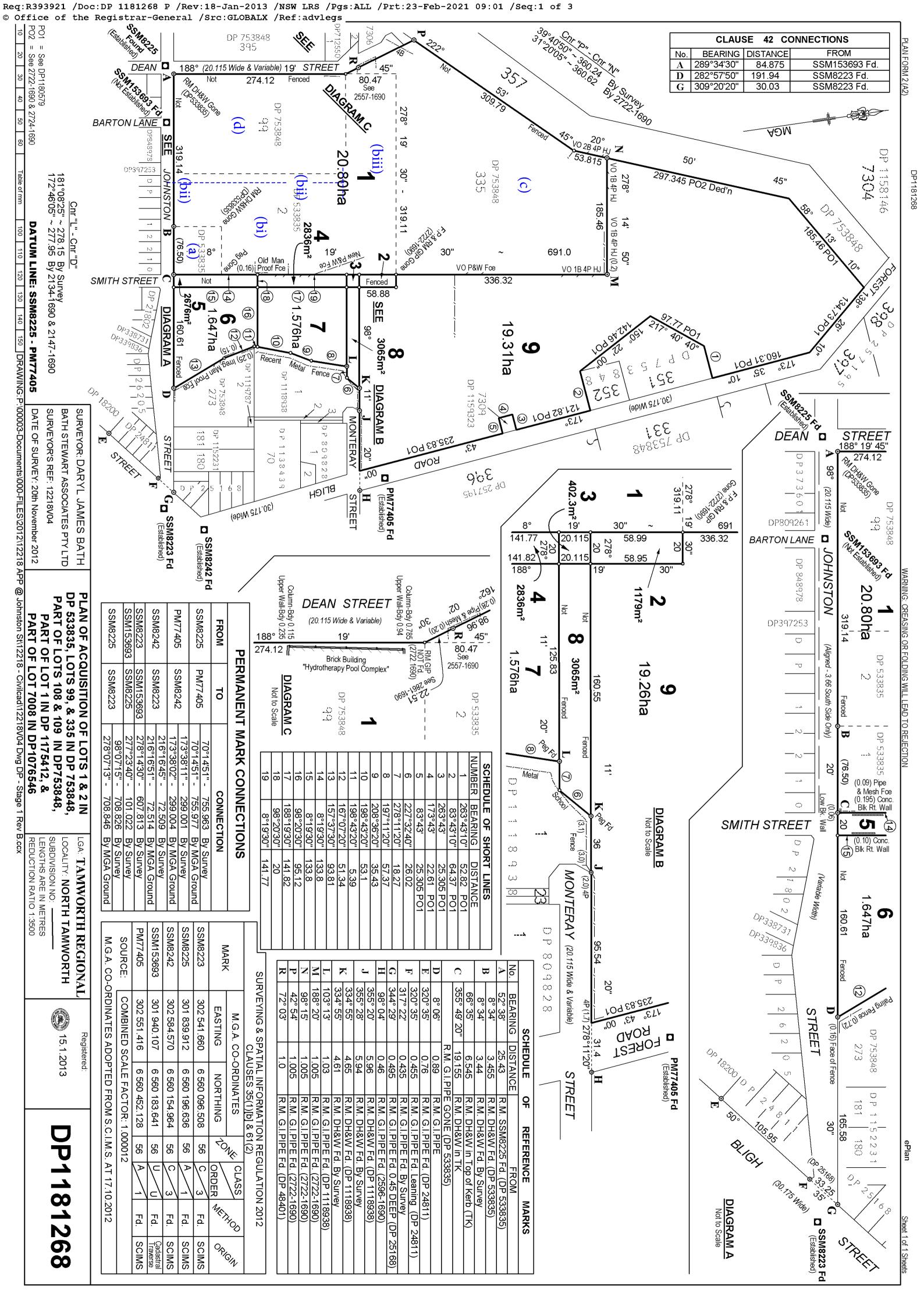
FIRST SCHEDULE

THE COMMONWEALTH OF AUSTRALIA.

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to.

Registrar General


1962M7500

Req:R393922 /Doc:CT 11118-235 CT /Rev:04-Feb-2011 /NSW LRS /Pgs:ALL /Prt:23-Feb-2021 09:01 /Seq:2 of 2 © Office of the Registrar-General /Src:GLOBALX /Ref:advlegs The state of the s

ر ا ا			;	7 1	I	T	 ; {			
Signature of Registrar General										
ENTERED						CANCELLATION				
DATE							was allow to the second of the second of			
INSTRUMENT	, , , , , , , , , , , , , , , , , , ,					Signature of Registrar General	a real and the second s			
						Regi				
NATURAL NATURA NATU						ENTERED				and the same of the same
REGISTERED PROPRIETOR		SEE AUID FOLID			SECOND SCHEDULE (continued)	PARTICULARS				The real name of the contract
REGISTER						DATE				
						INSTRUMENT NUMBER 1 D				;
						IN NATURE .				

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

(Page 2 of 2 pages)

PLAN FORM 6 (2012)

WARNING: Creasing or folding will lead to rejection

ePlan

DEPOSITED PLAN ADMINISTRATION SHEET

Sheet 1 of 2 Sheet(s)

Office Use Only

Registered:

Office Use Only 15.1.2013

Title System:

TORRENS

Purpose:

ACQUISITION

PLAN OF ACQUISITION OF LOTS 1 & 2 IN DP533835, LOTS 99 & 335 IN DP753848, PART OF LOTS 108 & 109 IN DP753848, PART LOT 1 IN DP1175412, & PART OF LOT 7008 IN DP1076546

Crown Lands NSW/Western Lands Office Approval

I, (Authorised Officer) in approving this plan certify that all necessary approvals in regard to the allocation of the land shown herein have been given.

Signature:

Date:

File Number:

Office:

Subdivision Certificate

*Authorised Person/*General Manager/*Accredited Certifier, certify that the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to the proposed subdivision, new road or reserve set out herein.

Signature:

Accreditation number:

Consent Authority: TAMWORTH REGIONAL COUNCIL.....

Date of endorsement:

Subdivision Certificate number:

*Strike through if inapplicable.

Statements of intention to dedicate public roads, public reserves and drainage reserves.

File number:

IT IS INTENDED TO ACQUIRE LOTS 1 TO 5, INCLUSIVE, FOR THE PURPOSES OF THE HEALTH ADMINISTRATION ACT 1982, AS REFERRED TO BY NOTICE IN THE NSW **GOVERNMENT GAZETTE No. 130 FOLIO 5244 DATED** 21.12.2012.

DP1181268

LGA: TAMWORTH REGIONAL

Locality: North Tamworth

Parish: Tamworth

County: Inglis

Survey Certificate

I. DARYL JAMES BATH

of BATH, STEWART ASSOCIATES Pty Ltd

PO Box 403, Tamworth NSW 2340 (Tel: 02 6766-5966)

a surveyor registered under the Surveying and Spatial Information Act 2002, certify that:

- *(a) The land shown in the plan was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate and the survey was completed on
- *(b) The part of the land shown in the plan excluding part of Lot 9 was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate and the survey was completed on, 20th November 2012. The part not surveyed was compiled in accordance with that Regulation.
- *(c) The land shown in this plan was compiled in accordance with the Surveying and Spatial Information Regulation 2012.

...... Dated: 22.11.2012 ...

Signature: Surveyor ID: 1307

Datum Line: SSM8225 - PM77405

Type: Urban

The terrain is *Level-Undulating / *Steep-Mountainous.

*Strike through if inapplicable, *Specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey.

Plans used in the preparation of survey/compilation.

7 10010 0000 IS	. and proparous	,,, 0, 00, 10,		
DP12210	DP533835	DP1152231	2861-1690	46-1393
DP21802	DP602489	DP1175412	2134-1690	
DP24811	DP712550	DP1180579	2722-1690	
DP25168	DP809828	1793-1690	2724-1690	
DP26205	DP1076546	2147-1690	2596-1690	
DP48401	DP1099608	2149-1690	2796-1690	
DP257195	DP1118938	2557-1690	43-1393	

If space is insufficient continue on PLAN FORM 6A

Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A

Surveyor's Reference: 12218V04

PLAN FORM 6A (2012)

WARNING: Creasing or folding will lead to rejection

ePlan

DEPOSITED PLAN ADMINISTRATION SHEET

Sheet 2 of 2 Sheet(s)

Office Use Only

Office Use Only

Registered:

15.1.2013

DP1181268

PLAN OF ACQUISITION OF LOTS 1 & 2 IN DP533835, LOTS 99 & 335 IN DP753848, PART OF LOTS 108 & 109 IN DP753848, PART LOT 1 IN DP1175412, & PART OF LOT 7008 IN DP1076546

Subdivision Certificate number:

Date of Endorsement:

This sheet is for the provision of the following information as required:

- A schedule of lots and addresses See 60(c) SSI Regulation 2012
- Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919
- Signatures and seals- see 195D Conveyancing Act 1919
- Any information which cannot fit in the appropriate panel of sheet
 1 of the administration sheets.

Lot	Street Number	Street Name	Street Type	Locality
1	NA		Street	North Tamworth
2	NA	Johnston	Street	North Tamworth
3	NA	NA	NA	North Tamworth
4	NA	NA	NA	North Tamworth
5	NA	Johnston	Street	North Tamworth
6	NA	Johnston	Street	North Tamworth
7	NA	NA	NA	North Tamworth
8	NA	NA	NA	North Tamworth
9	NA	Forest	Road	North Tamworth

If space is insufficient use additional annexure sheet

Surveyor's Reference: 12218V04

SEARCH DATE -----23/2/2021 9:03AM

FOLIO: 1/533835

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 11118 FOL 235

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
4/7/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
12/12/1995	0760325	TRANSFER	EDITION 1
28/3/1996	0792878	LEASE	EDITION 2
23/6/1998	5074693	SURRENDER OF LEASE	EDITION 3
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

SEARCH DATE

23/2/2021 9:03AM

FOLIO: 1/1181268

First Title(s): VOL 5159 FOL 106 VOL 601 FOL 193

VOL 4517 FOL 90

Prior Title(s): 1-2/533835
335/753848

Recorded	Number	Type of Instrument	C.T. Issue
15/1/2013	DP1181268	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
24/6/2013	АН827345	DEPARTMENTAL DEALING	FOLIO CREATED EDITION 1
23/4/2014	DP1195542	DEPOSITED PLAN	
20/5/2015	AJ356883	TRANSFER GRANTING EASEMENT	EDITION 2
23/5/2017	AM412160	LEASE	EDITION 3
19/7/2018	AN471831	APPLICATION FOR RECORDING OF ACTION AFFECTING CROWN HOLDING	
4/8/2020	AQ294846	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

advlegs

SEARCH DATE -----23/2/2021 9:03AM

FOLIO: 2/533835

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 11100 FOL 35

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
30/6/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
10/5/1989	Y342683	LEASE	EDITION 1
13/1/1998	3726462	LEASE	EDITION 2
9/3/1998	3841863	CHANGE OF NAME	EDITION 3
19/7/1999	5994173	LEASE	EDITION 4
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

FOLIO: 99/753848

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 601 FOL 193

Recorded	Number	Type of Instrument	C.T. Issue
15/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
29/1/1991		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
2/5/1991		AMENDMENT: TITLE DIAGRAM	
2/12/1997	3630592	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 1
13/1/1998	3726462	LEASE	EDITION 2
9/3/1998	3841863	CHANGE OF NAME	EDITION 3
19/7/1999	5994173	LEASE	EDITION 4
8/1/2001	7324434	DEPARTMENTAL DEALING	
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

FOLIO: 335/753848

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 5159 FOL 106

Recorded	Number	Type of Instrument	C.T. Issue
21/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
28/6/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
2/5/1991		AMENDMENT: TITLE DIAGRAM	
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

FOLIO: 1/1181268

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 23/2/2021
 9:03 AM
 3
 23/5/2017

LAND

LOT 1 IN DEPOSITED PLAN 1181268
AT NORTH TAMWORTH
LOCAL GOVERNMENT AREA TAMWORTH REGIONAL
PARISH OF TAMWORTH COUNTY OF INGLIS
TITLE DIAGRAM DP1181268

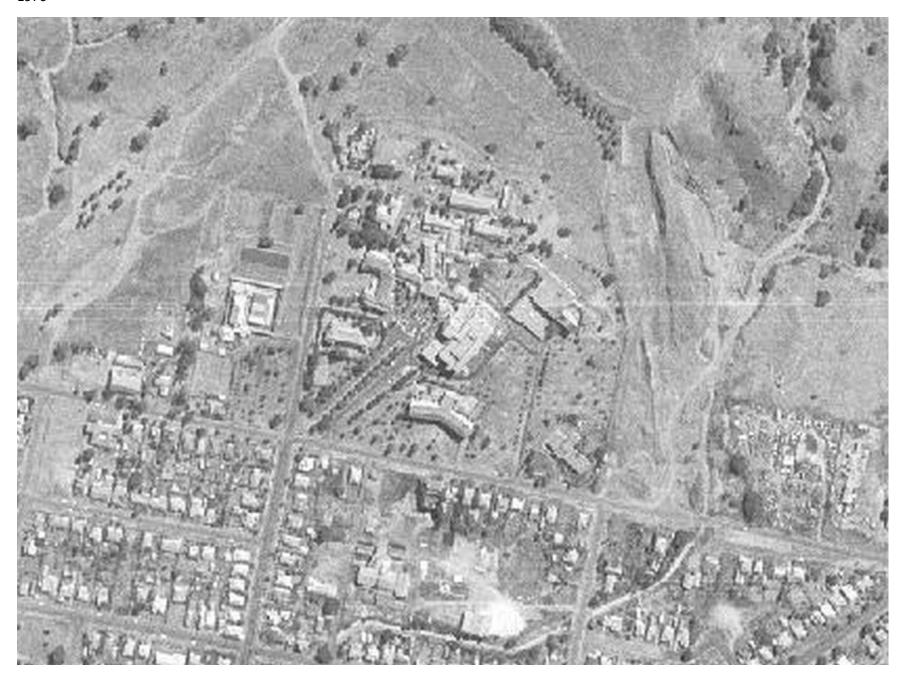
FIRST SCHEDULE

HEALTH ADMINISTRATION CORPORATION

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS OF THE PART(S) FORMERLY IN LOT 355 IN DP753848, LOT 1 IN DP533835 & LOT 2 IN DP533835
- 2 AJ356883 EASEMENT FOR UNDERGROUND POWER LINES 2 WIDE AFFECTING THE PART SHOWN AS "PROPOSED EASEMENT FOR UNDERGROUND POWER LINES 2 WIDE" IN DP1195542.
- 3 AM412160 LEASE TO HS CATERER PTY LTD OF SHOP 1. CAFE SHOP 2 & CANCER CLINIC SHOP 3, 31 DEAN STREET, TAMWORTH. EXPIRES: 31/5/2021. OPTION OF RENEWAL: 5 YEARS.

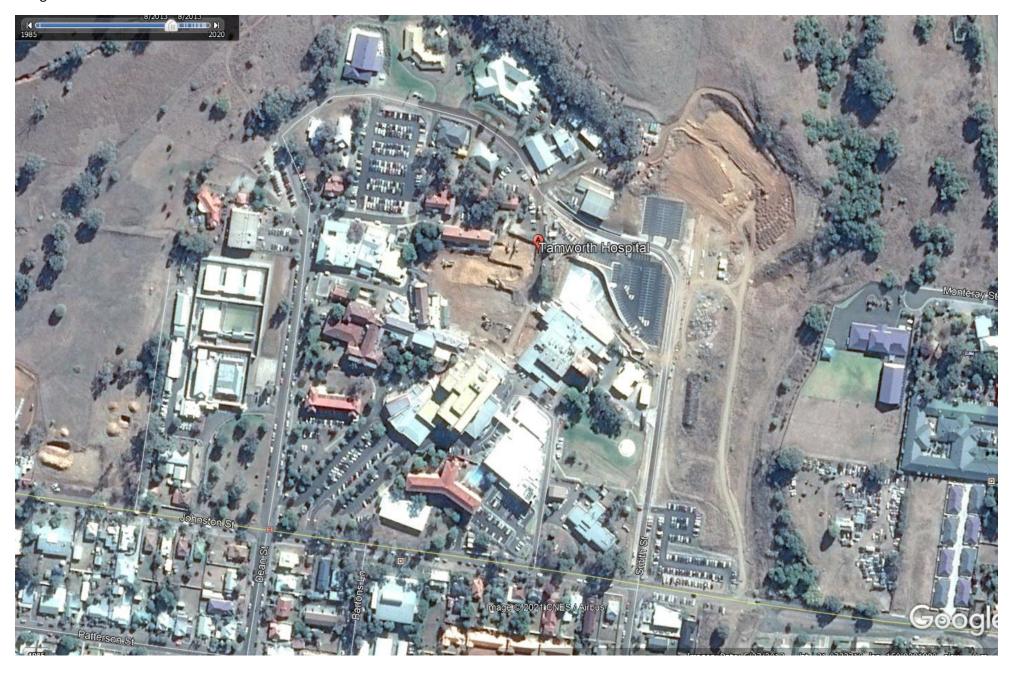
NOTATIONS



NOTE: THIS FOLIO MAY BE ASSOCIATED WITH A CROWN TENURE WHICH IS SUBJECT TO PAYMENT OF AN ANNUAL RENT. FOR FURTHER DETAILS CONTACT CROWN LANDS.

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***


advlegs

Google Earth 2013

Google Earth 2015

Appendix B Results of Field Investigations

CLIENT: RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks **JOB NO:** RGS32576.1

TP-N1

1 of 1

TEST PIT NO:

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: North Site DATE: 28/9/22

EQUIPMENT TYPE: 5T Excavator **EASTING**: 301927 m **SURFACE RL**:

			IENT TYP			cavato		EASTING		301927		SURF		RL:	ALID
			T LENGTI		0.3 m	W	IDTH:			6560588	om L	DATU	1	d Ta-1	AHD
\vdash	E	xcav	ation and S	ampling	I T		7	Material description and profile informat	on				Fiel	d Test	
	OD I III	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, pla characteristics,colour,minor comp	sticit nen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
ľ	ш	tered	0.05m ES		-		CI	FILL: Gravelly CLAY, medium plasticit grained, with rootlets	y, br	own, fine			.30m)	3	FILL
		Not Encountered	0.10m		0.2		CH	0.10m FILL: Silty CLAY, medium to high plas grey-brown, fine to medium grained, a	— - ticity ngula	, ar gravel	W ∧ W	St	DCP (0.00-1.30m)	3	
					0.4									3	
					-									5	
					0.6			0.60m						5	
٥					-		CI	FILL: Gravelly CLAY, medium plasticil fine to coarse grained gravel, with roun up to 150mm	y, rei ided	d-brown, cobbles				2	
00.0 2021-06-3			0.80m		0.8			0.80m						2	
H03 Prj: RG 2.0			ES 0.90m		-		CI	CLAY: Medium plasticity, pale brown, gravel, fine to medium grained, angula	vith :	some	M < W _p	VSt - H		2	COLLUVIUM
2.00.3 2022-03					1.0									3	
ogo Lib: RG					-									4	
In Situ Tool - E					1.2									7	
atgel Lab and					-			1.30m Hole Terminated at 1.30 m						14	
<u>v</u>	Vate	Wat	er Level		1.4 1.6 1.8 1.8 U ₅₀ CBR	50mm	Diame			S S	ery Soft Soft irm		- 25	CS (kP: 25 5- 50 3- 100	D Dry M Moist W Wet
og RG NON-COKEU B	-◀	Wat	e and time sl er Inflow er Outflow <u>anges</u>	hown)	E ASS B	Enviro Acid S Bulk S	nmenta	or CBR testing al sample Soil Sample		St S VSt V H H Fb F	Stiff /ery Stiff lard riable		10 20 >4	00 - 200 00 - 400 400	W _p Plastic Limit W _L Liquid Limit
3G 2:00:3 LIB:GLB L		tra _ De	radational or ansitional stra efinitive or dis rata change	ata	Field Tes PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) imeter test (UCS kPa)		<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose lediur ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks JOB NO:

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:North SiteDATE:28/9/22

TP-N2

1 of 1

RGS32576.1

TEST PIT NO:

PAGE:

FOLIIPMENT TYPE: 5T Excavator FASTING: 301904 m SURFACE RI

			IENT TYP		5T Exc				EASTING:	301904		SURF		RL:	
Ľ	ΓES	T PI	T LENGTI	H:	0.3 m	WI	IDTH:	2.0 m	NORTHING:	6560535	m [DATUI	M:		AHD
L	E	xcav	ation and S	ampling				Material description an	d profile information				Field	d Test	
	MEINOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTI characteristics,co	ON: Soil type, plasticity lour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	П	untered			-		CI	to medium grained, v o.10m grained, with rootlets	nedium plasticity, brow ith some gravel, fine to	o medium _					FILL
		Not Encountered	0.20m		0.2		CH	FILL: Silty CLAY, me pale brown, grey, sor grained, angular	dium to high plasticity, ne gravel, fine to medi	brown, um	M > Wp	St - VSt			HP=230kPa
			В		0. <u>4</u> - -										HP=250kPa
00-00-13			0.60m		0. <u>6</u> - -										
202 C.O. 2 C.O. 19: 10 2: 00:00					0.8										
1001 - DGD Liu, no 2,000					1.0_ - - - 1.2	X	CI	Silty CLAY: Medium	plasticity, red-brown		M × W	VSt - H			COLLUVIUM
IV.03.VV.US Datger Lab and In Situ 1001 - DGD LID: RG Z.VV.S ZVZZJS-US PJ; RG Z.VV.U ZVZ I-06-30					- 1. <u>2</u> 1.4			1.40m							HP=300kPa
					-			Hole Terminated at 1	.40 m						HP=450kPa
					1.6 - - - - 1.8										
- 1	_EGE	ND:			Notes, Sa	mples ar	nd Tes	<u>s</u>		Consister	псу		U	CS (kPa	Moisture Condition
	_	Wate (Dat Wate	er Level e and time sl er Inflow	hown)	U ₅₀ CBR E ASS	Bulk sa Enviro Acid S	ample f nmenta Julfate S	ter tube sample or CBR testing I sample ioil Sample		S So F Fi St St VSt Vo	ery Soft oft irm tiff ery Stiff		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	
5		a Cha	er Outflow anges radational or		B Field Test	_	·			1	ard riable V		ery Lo	oose	Density Index <15%
NG ZJUGG LIB.GL	_	_ De	insitional stra efinitive or dis rata change		PID DCP(x-y) HP	Dynan	nic pen	on detector reading (ppm) etrometer test (test depth inten meter test (UCS kPa)	val shown)		L ME D VD) M De	oose edium ense ery De	n Dense ense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks JOB NO:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD TEST LOCATION: North Site DATE: 28/9/22

TP-N3

1 of 1

RGS32576.1

TEST PIT NO:

PAGE:

			IENT TYP		5T Exc			EASTING:	301902		SURF		RL:	
F			T LENGTI		0.3 m	WI	IDTH:	2.0 m NORTHING	6560542	2 m [DATU			AHD
F	E	xcav	ation and S	ampling			7	Material description and profile information				Field	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics, colour, minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	Ш	Not Encountered	0.10m		-		CI	TOPSOIL: Gravelly CLAY, medium plastic brown, fine grained, angular gravel, with so	ity, ome roots					TOPSOIL
		Not Er	0.20m 0.30m		0. <u>2</u> - -		CI	o.20m Silty CLAY: Medium plasticity, brown, with gravel, fine to medium grained, angular	 some	M & W	St			COLLUVIUM HP=200kPa
			B 0.60m		0.4 - - - 0.6									HP=150kPa
03-03 Pg: KG 2:00:0 zuzn-uo-su			0.90m		- 0.8 - -		_ CI	0.90m	 wwn, fine	Λ _P	VSt			
10.03.00.09 Daget Laband in Situ Tool - DGD Litis RG 2.00.3 2022-03-03 Prj. RG 2.00.0 2021-06-30			ES 1.00m		1. <u>0</u> - - - 1.2			to medium grained, angular gravel	,	M < Wp				HP=350kPa
I FIT KGSSZS76.1 IF-N BH LOGS.GFJ < <drawng-185> 309/2022 14:35 10.03.00.09 Daget Lab and in S</drawng-185>					1.4_ 1.6_ 1.8_ 			Hole Terminated at 1.20 m						
S NON-CORED BOREHOLE -	Wate	Wat (Dat Wat Wat	er Level te and time sl ter Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk sa Enviro	Diamel ample fo nmenta sulfate S	s er tube sample or CBR testing I sample oil Sample	S S F F St S VSt \	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable		25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
transitional strata		Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%			

ENGINEERING LOG - BOREHOLE

CLIENT: RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks **JOB NO:** RGS32576.1

BOREHOLE NO: BH-N4

1 of 1

PAGE:

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:North SiteDATE:28/9/22

DRILL TYPE: Hand Auger EASTING: 301902 m SURFACE RL:

		YPE: OLE DIAN	Hand A	_	nm	IN	CLINATION: 90° NORTHING:	301902 6560521		DATU		KL:	AHD
	Drilli	ing and Sar	npling	1			Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
HA				0.2 0.4 0.6 0.8 1.0 1.6 1.8		CI	Gravelly CLAY: Medium plasticity, pale broto medium grained, angular gravel 1.00m Hole Terminated at 1.00 m		M > Wp	VSt VSt	DCP (0.00-1.40m)	2 2 2 2 3 7 6 4 5 4 8 8	COLLUVIUM Increased moisture form 0.5m
Wate	Wate (Dat Wate	er Level e and time si er Inflow er Outflow	hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ster tube sample or CBR testing I sample soil Sample	S S F Fi St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	Gr tra — De	radational or ansitional stra efinitive or dis rata change	ata	PID DCP(x-y) HP	Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MD D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks **JOB NO:** RGS32576.1

TP-S1

1 of 1

TEST PIT NO:

PAGE:

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:South SiteDATE:28/9/22

EQUIPMENT TYPE: 5T Excavator EASTING: 301959 m SURFACE RL

		MENT TYP		5T Exc			2.0 m	EASTING:	301959		SURF		RL:	ALID
-		vation and S		0.3 m	VVI	DTH:	Material description an	NORTHING:	0000220	III L	DATU		d Test	AHD
		Valion and 3	ampiing		O	NOI	waterial description an	d prome imormation		шұ	, ic√			Other sections and addition of
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Characteristics, co	ON: Soil type, plasticity olour,minor component	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Ш	Not Encountered	0.05m ES 0.10m		- -		CI	FILL: Gravelly CLAY, to coarse grained gra material including wire	, medium plasticity, bro evel, angular, with som e and concrete	own, fine e foreign	M × W		DCP (0.00-1.20m)	2	FILL
	Not Enc	0.20m		0. <u>2</u>								DCP (0.0	3	
		0.35m		-									2	
		0.40m		0. <u>4</u> - -									3	
		В		0. <u>6</u>									4	
2		0.70m		_			0.70m	ili una mila attata di A			1/0:		9	COLLUVIUM — — — — —
i nosovog vagar Labarini i Siu Tod - DOU Liu. No z.w.s. azzkasas Pij. No z.w.s. aze rooso		ES 0.80m		0.8		CI	to medium grained, a	ium plasticity, pale bro ngular gravel	own, tine		VSt		3	COLLOVION
				- - 1.0	9 9 9								4	
				1. <u>0</u> 	, , ,								5	HP=250kPa
90-100 100				- - 1.2			1.20m						7	
of part and of				-			Hole Terminated at 1	.20 m						
				1. <u>4</u>										
				-										
b				1. <u>6</u>										
,				- - 1.8										
FII NGSZZJG. I IF-N BTI LOGS, GFJ - CLJIANNIG IB-Y 3 GB/ZUZ. 14,53				- - -										
	SEND:			- Notes, Sa	mples a	nd Test			Consister	ncy		U	CS (kPa) Moisture Condition
Wat	ter	ter Level		U ₅₀	50mm	Diame	er tube sample		VS V	ery Soft oft		<2 25	25 5 - 50	D Dry M Moist
	(Da	te and time sl ter Inflow	hown)	CBR E ASS	Enviro	nmenta	or CBR testing I sample		St S	irm tiff en/ Stiff		10) - 100)0 - 200	W Wet W _p Plastic Limit
5	• Wa	ter Outflow	'	ASS B	Bulk S		oil Sample		н н	ery Stiff ard			00 - 400 100	W _L Liquid Limit
Stra	G	anges Fradational or ansitional stra	ata -	Field Test	- Photoi		n detector reading (ppm)	val abayus)	Fb Fi Density	riable V L	Lo	ery Lo		Density Index <15% Density Index 15 - 35%
		efinitive or dis trata change	stict [DCP(x-y) HP			etrometer test (test depth intendenter test (UCS kPa)	vai SNOWN)		ME D VD	D	ediun ense ery De	n Dense ense	Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: South Site DATE: 28/9/22

TP-S2

1 of 1

RGS32576.1

TEST PIT NO:

PAGE:

JOB NO:

EQUIPMENT TYPE: 5T Excavator EASTING: 301943 m SURFACE RL:

EQUIPMENT TYPE: TEST PIT LENGTH: Excavation and Samplin			5T Excavator 0.3 m WIDTH:										ALID	
-				0.3 m	W	ин:			6560219	m L	DATU			AHD
	Exca\	ation and S	ampling			7	ıvıaterial descriptio	on and profile information				riel	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCF characteristi	RIPTION: Soil type, plasticity cs,colour,minor component	//particle s	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
В	Not Encountered	0.00		-		CI	some fine to coa	edium plasticity, dark brown, arse grained gravel, with sor including broken tiles, timbe	me	M < W _P	St - VSt	DCP (0.00-1.10m)	3	FILL
	Not	0.20m ES 0.30m		0. <u>2</u> - - -								DCP	3	HP=250kPa
				0. <u>4</u> - -				dium plasticity, pale brown, e to medium grained, angul			VSt - H		4	COLLUVIUM
2000-				0. <u>6</u> - -	X		g ,						2	HP=300kPa
nocioovar tagai tacanni man toor toori jaca kacacacaca nji N.V. acacacacaca				0. <u>8</u> - -	X								6	
				1. <u>0</u> - -	- x - x - x - x								12	HP=>600kPa
				1.2	<u></u> ×		Hole Terminated	d at 1.20 m						
				1. <u>4</u>										
				1. <u>6</u>										
				- - 1. <u>8</u>										
	GEND:			- Notes, Sa	mples a	nd Test	s		Consister	ncy		U	CS (kPa	a) Moisture Condition
Wat ▼	ter Wat (Da Wat Wat	ter Level te and time si ter Inflow ter Outflow anges	hown)	U₅o CBR E ASS B	50mm Bulk s Enviro	Diame ample f nmenta	er tube sample or CBR testing I sample ioil Sample		VS Ve S So F Fi St St VSt Ve H Ha	ery Soft oft rm		25 50 10 20	•	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	anges tradational or ansitional stra efinitive or dis trata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	n detector reading (ppm) strometer test (test depth meter test (UCS kPa)		Density	V L MD D VD	Lo M D	ery Lo oose ediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: South Site DATE: 28/9/22

TP-S3

1 of 1

RGS32576.1

TEST PIT NO:

PAGE:

JOB NO:

			IENT TYP		5T Exc 0.3 m	cavator W I	DTH:	EASTING: 2.0 m NORTHING:	301936 6560221		SURF/		RL:	AHD
ŀ			ation and S					Material description and profile information				Field	l Test	
	МЕТНОВ	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
5: 10.03.00.09 Dangel Lab and in Sta. Tool - DGD Lilk: RG 2.00.3 2022-03-03 Prj: RG 2.00.0 2021-06-30	B	Not Encou	0.10m ES 0.20m 0.30m B 0.60m		0.2 0.4 0.6 0.8 1.0 1.2		ML	FILL: Clayey SILT, low plasticity, dark brow rootlets 0.30m Silty CLAY: Medium plasticity, pale brown, with some gravel, fine to medium grained, and the some gravel. Hole Terminated at 1.20 m	— — — — - grey,	M < W _P M > W _P		DCP (0.00-1.00m)	2 2 5	COLLUVIUM
RG 2.00.3 LIB.GLB Log RG NON-CORED BOREHOLE - TEST PIT RGS32576.1 TP-N BH LOGS.GPJ << DrawingFile>> 30'9/2/022 14;55	Wate	Wat (Dat Wat Wat ta Cha G tra	er Level te and time si er Inflow er Outflow anges radational or ansitional stra efinitive or dis rata change	hown)	1.6	50mm Bulk sa Enviro Acid S Bulk S SS Photoi Dynan	Diamel ample for nmenta ulfate S ample onisation	ser tube sample or CBR testing I sample oil Sample oil Sample on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff lard riable V L MC D VD	Ve Lc M De	<2 25 50 10 20 >4 ery Lo	- 50 - 100 0 - 200 0 - 400 00 ose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: South Site DATE: 28/9/22

TP-S4

1 of 1

RGS32576.1

TEST PIT NO:

PAGE:

JOB NO:

EQUIPMENT TYPE: 5T Excavator **EASTING**: 301901 m **SURFACE RL**:

		MENT TYP IT LENGTI		5T Exc 0.3 m		r I DTH :	2.0 m	EASTING: NORTHING:	301901 6560216		SURF/ DATUI		RL:	AHD
	Excav	ation and S	ampling				Material description and pr	ofile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: characteristics,colour			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
3	Not Encountered	0.10m ES 0.20m 0.50m ES 0.60m 1.00m		0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6		CI	FILL: Sitty Sandy CLAY, brown, fine grained sand material including wire CLAY: Medium plasticity, gravel, fine to medium gr SILTSTONE: Pale brown Hole Terminated at 1.00	pale brown, with sained, angular	eign	M < Wp	St	DCP (0.00-1.40m)	3 2 2 2 3 3 1 2 2 3 5 6 8	COLLUVIUM HIGHLY TO MODERATELY WEATHERED SILTSTONE Highly fractured Low strength
Wat ▼	Wat (Dat Wat Wat Mata Cha G	ter Level te and time si ter Inflow ter Outflow anges angeational or ansitional stra	hown)	1.8	50mm Bulk s Enviro Acid S Bulk S S Photoi Dynan	Diame ample formenta sulfate S ample conisation	s er tube sample or CBR testing I sample oil Sample oil Sample in detector reading (ppm) etrometer test (test depth interval s meter test (UCS kPa)	hown)	S So F Fi St St VSt Ve H Ha	ncy ery Soft oft rm tiff ery Stiff ard iable V L ME	Ve Lo	25 50 10 20 20 20 ery Lo	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit Liquid Limit Density Index <15% Density Index 15 - 35%

ENGINEERING LOG - BOREHOLE

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks

SITE LOCATION: Tamworth Hospital LOGGED BY: LD TEST LOCATION: South Site DATE: 28/9/22

BOREHOLE NO: BH-S5

1 of 1

RGS32576.1

PAGE:

JOB NO:

DRILL TYPE: Hand Auger **EASTING:** 301869 m SURFACE RL:

		OLE DIAN		-	nm	IN	CLINATION: 90° NORTHING:	6560212		DATU			AHD
	Drilli	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor component		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
НА	Encor	0.10m ES 0.20m		0.2		CI	FILL: Gravelly CLAY, medium plasticity, br to medium grained gravel, angular	rown, fine	M < W _P		DCP (0.00-1.30m)	2 8	FILL
	Ž			-							DC	6	
				0. <u>4</u> - -			0.50m					5	
				0.6			Hole Terminated at 0.50 m					8	
				0.8								3	
				-								3	
				1.0								5	
				1. <u>2</u>								9	
				- - 1.4								10	
				-									
				1. <u>6</u>									
				1. <u>8</u> -									
LEG Wat	END:			Notes, Sa	mples a	nd Test	<u>s</u>	Consiste VS V	ncy ery Soft		<u>U(</u>	CS (kPa) 25	Moisture Condition D Dry
<u>_</u>	Wate (Dat Wate	er Level e and time si er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro	ample f nmenta ulfate S	ter tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V H H	oft irm itiff ery Stiff lard		25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
Stra	tra De	anges radational or ansitional stra efinitive or dis rata change	ata	PID DCP(x-y) HP	Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Fb F <u>Density</u>	riable V L MD D VD	Lo M De	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE

CLIENT:

RP Infrastructure

PROJECT NAME: Proposed Ongrade Parks

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: South Site DATE: 28/9/22

BOREHOLE NO: BH-S6

1 of 1

RGS32576.1

PAGE:

JOB NO:

DRILL TYPE: Hand Auger EASTING: 301883 m SURFACE RL:

		YPE: OLE DIAN	Hand <i>I</i>	-	nm	IN		EASTING: NORTHING:	301883 6560246		SURF/ DATU		RL:	AHD
	Drill	ing and Sar	npling				Material description and profi	le information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: So characteristics, colour, m			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
HA	Not Encountered	0.10m ES 0.20m		0.2 0.2 0.4 0.6 0.8 1.0		70 G	FILL: Sandy CLAY, medium fine to medium grained sand FILL: Gravelly CLAY, medium roots Silty CLAY: Medium plastic some gravel, fine to medium Hole Terminated at 1.00 m	um plasticity, bro	wn, with	M < W _p		DCP (0.00-1.00m)	2 3 3 3 2 2 3 5 15	COLLUVIUM
Wat	Wat (Dat Wat I Wat ta Cha G tra	er Level e and time si er Inflow er Outflow anges anstitional or ansitional stra efinitive or die	hown)	1.6_	50mm Bulk s Enviro Acid S Bulk S Es Photoi Dynan	Diame ample formenta Sulfate S Sample dionisation	ster tube sample for CBR testing I sample soil Sample soil Sample soil Sample soil sample for detector reading (ppm) etrometer test (test depth interval showmeter test (UCS kPa)	wn)	S So F Fi St St VSt Ve H Ha	ery Soft oft rm	Vi Lc D M	25 50 10 20 >2 ery Lo	n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

Appendix C
Laboratory Test Result Sheets

Client: RP Infrastructure Job No. Project:

Tamworth Health Service Redevelopment: Proposed On-grade Carparks

Location: Dean Street, Tamworth

			ASBESTOS		TOTAL RECOVERA	ABLE HYDROC	CARBONS		P	AH			Pesti	cides				HEAVY	METALS			
Location	DEPTH (m)	MATERIAL	Present	C6-C10	C10-C16	C16-C34	C34-C40	TOTAL 10-40	Total	b-a-p	BTEX	PCB	ос	OP	As	Cd	Cr#	Cu	Pb	Ni	Zn	Hg
TP-N1	0.05-0.1	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	15	24	10	11	54	<0.1
TP-N2	0.05-0.1	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	8	<1	14	33	8	12	60	<0.1
TP-N3	0.9-1.0	Colluvial Soil	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	10	<1	12	35	8	9	63	<0.1
TP-N4	0.1-0.2	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	5	<1	16	27	27	11	85	<0.1
TP-N5	0.05-0.1	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	7	<1	14	28	14	11	83	<0.1
TP-N6	0.1-0.2	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	8	<1	16	37	24	14	94	<0.1
TP-N7	0.05-0.1	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	13	17	6	10	30	<0.1
TP-N8	0.05-0.1	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	7	<1	14	32	8	13	58	<0.1
TP-S1	0.3-0.35	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	12	42	10	12	78	<0.1
TP-S2	0.2-0.3	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	12	40	11	11	79	<0.1
TP-S3	0.1-0.2	Topsoil	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	5	<1	24	35	14	22	71	<0.1
TP-S4	0.1-0.2	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	28	30	22	25	63	<0.1
TP-S5	0.1-0.2	Fill	No	<10	<10	100	<100	100	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	26	35	27	21	71	<0.1
TP-S6	0.1-0.2	Fill	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	5	<1	22	30	12	18	52	<0.1
TP-S7	0.1-0.2	Colluvial Soil	No	<10	<10	200	150	350	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	21	30	22	18	85	<0.1
TP-S8	0.05-0.1	Colluvial Soil	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	23	31	9	14	63	<0.1
TP-S9	0.1-0.2	Colluvial Soil	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	28	30	14	25	60	<0.1
TP-S10	0.1-0.2	Colluvial Soil	No	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	13	44	12	11	90	<0.1
					<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
N-D1 (duplicate of TP- N4 0.1-0.2m)	0.1-0.2	Fill		<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	7	<1	18	26	28	12	78	<0.1
N-T1 (triplicate of TP- N4 0.1-0.2m)	0.1-0.2	Fill		<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	9	<0.5	19	29	31	15	96	<0.1
S-D1 (duplicate of TP- \$5 0.1-0.2m)	0.1-0.1	Fill		<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	24	34	22	21	67	<0.1
S-T1 (triplicate of TP- S5 0.1-0.2m)	0.1-0.2	Fill		<10	<10	96	<100	<50	2.6	0.3	<0.2	<0.1	<0.2	<0.2	7	<0.5	26	35	23	23	73	<0.1
	<u> </u>						 									 	 	 	 			
N-D1 RPD (%)	<u> </u>			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	11.7	3.8	3.6	8.7	8.6	0.0
N-T1 RPD (%) S-D1 RPD (%)	·			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.1 0.0	0.0	17.1 8.0	7.1 2.9	13.8 20.4	30.8 0.0	12.1 5.8	0.0
S-T1 RPD (%)	· 			0.0	0.0	4.0	0.0	0.0	130.0	0.0	0.0	0.0	0.0	0.0	15.3	0.0	0.0	0	16	9.1	2.8	0.0
	·				ļ		<u> </u>	<u> </u>						·		t	<u> </u>	 	†	 		ļ
Health Based Soil inve	estigation Le	vel (HIL)*:							400	4	NL	1	10	10	500	150	500#	30000	1200	1200	60000	120
Health Screening Leve	əl (HSL)**:			F1=70 (1-<2m)	F2=110 (0-<1m) F2=240 (1-<2m) F2=440 (2-<4m)																	
Ecological Investigation	on Level (Ell	_)***:				İ	<u> </u>	•							100	<u> </u>			1100			<u> </u>
Ecological Screening				215	170	1700	3300	 		0.7	50		-		100	Cogrse	grained soil	in ma/ka				
-				215	170	2500	6600	<u> </u>		0.7	65		<u> </u>				rained soil in					
Management Limits				700	1000	2500	10000			0.7			<u> </u>				grained soil			<u> </u>		<u> </u>
				800	1000	3500	10000	<u> </u>		 							rained soil in			<u> </u>		

No Limit available NL LOR Limit of Reporting

^{*} Health Based Investigation Levels for Reseidential B (NEPM 2013)

**Health Screening Level (F1 & F2) for Residential B land use and coarse grained soil (sand) (NEPM 2013)

** Ecological Investigation Level - for Residential B land use

** Ecological Screening Level for Residential B land use and fine grained soil

#Chromium VI

^{##} Speciation testing confirmed only Chromium III present

CERTIFICATE OF ANALYSIS

Work Order : ES2234920 Page : 1 of 27

Client : REGIONAL GEOTECHNICAL SOLUTION : Environmental Division Sydney

Contact : LOUIS DAVIDSON Contact : Customer Services ES

Address : 44 BENT STREET Address

WINGHAM NSW. AUSTRALIA 2429

Laboratory

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 6553 5641 Telephone **Date Samples Received**

: +61-2-8784 8555

Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Date Analysis Commenced

: 29-Sep-2022 13:28 : 30-Sep-2022

C-O-C number

Order number

Site

Issue Date

Sampler

: Tamworth Hospital

Quote number : EN/222 No. of samples received

No. of samples analysed

: 38

: 38

: 07-Oct-2022 17:26

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Accreditation Category **Position**

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Jake Spooner Newcastle - Asbestos, Mayfield West, NSW Laboratory Technician Wisam Marassa Sydney Inorganics, Smithfield, NSW Inorganics Coordinator

Page : 2 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N1 0.05-0.1	TP-N2 0.05-0.1	TP-N3 0.9-1	TP-N4 0.1-0.2	TP-N5 0.05-0.1
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-001	ES2234920-002	ES2234920-003	ES2234920-004	ES2234920-005
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identificat	ion of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
Sample weight (dry)		0.01	g	260	225	343	255	183
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER

Page : 4 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N6 0.1-0.2	TP-N7 0.05-0.1	TP-N8 0.05-0.1	TP-S1 0.3-0.35	TP-S2 0.2-0.3
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-006	ES2234920-007	ES2234920-008	ES2234920-009	ES2234920-010
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identification	n of Asbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
Sample weight (dry)		0.01	g	195	442	423	342	224
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER

Page : 5 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S3 0.1-0.2	TP-S4 0.1-0.2	TP-S5 0.1-0.2	TP-S6 0.1-0.2	TP-S7 0.1-0.2
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-011	ES2234920-012	ES2234920-013	ES2234920-014	ES2234920-015
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identificat	tion of Asbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
Sample weight (dry)		0.01	g	211	235	259	312	108
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER

Page : 6 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-S8	TP-S9	TP-S10	TP-N1	TP-N2
(Matrix: SOIL)				0.05-0.1	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-016	ES2234920-017	ES2234920-018	ES2234920-019	ES2234920-020
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		1.0	%				17.4	16.2
EA200: AS 4964 - 2004 Identification	of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No		
Asbestos Type	1332-21-4	-		-	-	-		
Synthetic Mineral Fibre		0.1	g/kg	No	No	No		
Organic Fibre		0.1	g/kg	No	No	No		
Sample weight (dry)		0.01	g	254	261	218		
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER		
EG005(ED093)T: Total Metals by ICP-	-AES							
Arsenic	7440-38-2	5	mg/kg				6	8
Cadmium	7440-43-9	1	mg/kg				<1	<1
Chromium	7440-47-3	2	mg/kg				15	14
Copper	7440-50-8	5	mg/kg				24	33
Lead	7439-92-1	5	mg/kg				10	8
Nickel	7440-02-0	2	mg/kg				11	12
Zinc	7440-66-6	5	mg/kg				54	60
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg				<0.1	<0.1
EP066: Polychlorinated Biphenyls (P	CB)							
Total Polychlorinated biphenyls		0.1	mg/kg				<0.1	<0.1
EP068A: Organochlorine Pesticides ((OC)							
alpha-BHC	319-84-6	0.05	mg/kg				<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg				<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg				<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg				<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg				<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg				<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg				<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg				<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg				<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg				<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg				<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg				<0.05	<0.05

Page : 7 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S8 0.05-0.1	TP-S9 0.1-0.2	TP-S10 0.1-0.2	TP-N1 0.05-0.1	TP-N2 0.05-0.1
		Samplii	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-016	ES2234920-017	ES2234920-018	ES2234920-019	ES2234920-020
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
Dieldrin	60-57-1	0.05	mg/kg				<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg				<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg				<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg				<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg				<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg				<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg				<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg				<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg				<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg				<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg				<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg				<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg				<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg				<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg				<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg				<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg				<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg				<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg				<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg				<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg				<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg				<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg				<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg				<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg				<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg				<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg				<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg				<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg				<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg				<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg				<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg				<0.05	<0.05

Page : 8 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-S8	TP-S9	TP-S10	TP-N1	TP-N2
(Matrix: SOIL)				0.05-0.1	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-016	ES2234920-017	ES2234920-018	ES2234920-019	ES2234920-020
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg				<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg				<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg				<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg				<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg				<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg				<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg				<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg				<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg				<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg				<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg				<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg				<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg				<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg				<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg				<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg				<0.5	<0.5
^ Sum of polycyclic aromatic hydrocar	bons	0.5	mg/kg				<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg				<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg				0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg				1.2	1.2
EP080/071: Total Petroleum Hydro	carbons							
C6 - C9 Fraction		10	mg/kg				<10	<10
C10 - C14 Fraction		50	mg/kg				<50	<50
C15 - C28 Fraction		100	mg/kg				<100	<100
C29 - C36 Fraction		100	mg/kg				<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg				<50	<50
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg				<10	<10
^ C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg				<10	<10
(F1)	_							
>C10 - C16 Fraction		50	mg/kg				<50	<50
>C16 - C34 Fraction		100	mg/kg				<100	<100
>C34 - C40 Fraction		100	mg/kg				<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg				<50	<50

Page : 9 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S8 0.05-0.1	TP-S9 0.1-0.2	TP-S10 0.1-0.2	TP-N1 0.05-0.1	TP-N2 0.05-0.1
		Sampli	ing date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-016	ES2234920-017	ES2234920-018	ES2234920-019	ES2234920-020
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hy	ydrocarbons - NEPM 201	3 Fractio	ns - Continued					
^ >C10 - C16 Fraction minus Naphth (F2)	alene	50	mg/kg				<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg				<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg				<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg				<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg				<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg				<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg				<0.2	<0.2
^ Total Xylenes		0.5	mg/kg				<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg				<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%				87.4	96.5
EP068S: Organochlorine Pesticio	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%				84.7	93.0
EP068T: Organophosphorus Pes	sticide Surrogate							
DEF	78-48-8	0.05	%				100	108
EP075(SIM)S: Phenolic Compou								
Phenol-d6	13127-88-3	0.5	%				98.5	92.0
2-Chlorophenol-D4	93951-73-6	0.5	%				99.4	92.0
2.4.6-Tribromophenol	118-79-6	0.5	%				72.2	62.4
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%				104	98.9
Anthracene-d10	1719-06-8	0.5	%				99.2	93.4
4-Terphenyl-d14	1718-51-0	0.5	%				105	99.2
EP080S: TPH(V)/BTEX Surrogate	es							
1.2-Dichloroethane-D4	17060-07-0	0.2	%				82.3	87.6
Toluene-D8	2037-26-5	0.2	%				90.4	97.9
4-Bromofluorobenzene	460-00-4	0.2	%				86.1	92.6

Page : 10 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-N3	TP-N4	TP-N5	TP-N6	TP-N7
(Matrix: SOIL)				0.9-1	0.1-0.2	0.05-0.1	0.1-0.2	0.05-0.1
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-021	ES2234920-022	ES2234920-023	ES2234920-024	ES2234920-025
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		1.0	%	16.2	14.5	21.9	12.5	4.9
EG005(ED093)T: Total Metals by ICP	-AES							
Arsenic	7440-38-2	5	mg/kg	10	5	7	8	6
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	12	16	14	16	13
Copper	7440-50-8	5	mg/kg	35	27	28	37	17
Lead	7439-92-1	5	mg/kg	8	27	14	24	6
Nickel	7440-02-0	2	mg/kg	9	11	11	14	10
Zinc	7440-66-6	5	mg/kg	63	85	83	94	30
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (F	PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 11 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N3 0.9-1	TP-N4 0.1-0.2	TP-N5 0.05-0.1	TP-N6 0.1-0.2	TP-N7 0.05-0.1
		Samplii	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-021	ES2234920-022	ES2234920-023	ES2234920-024	ES2234920-025
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 12 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sampling date / Inter- Compound CAS Number LOR Unit E8224820 021 E8224820-022 E82224820-023 E82224820-024 E82224820-023 E82224820-024 E82224820-023	Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N3	TP-N4	TP-N5	TP-N6	TP-N7
Compound CAS Number LOR Unit E8224420-021 E8224420-023 E8224420-024 E8224420-025 Result Res	(Wattix: SOIL)								
				-	•				· ·
Pyrone	Compound	CAS Number	LOR	Unit					ES2234920-025
Pyrone					Result	Result	Result	Result	Result
Benz(a)anthracene \$6.55-3 0.5 mg/kg <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		_							
Chrysne	Pyrene	129-00-0							
Benze(b+) fluoranthene	Benz(a)anthracene	56-55-3	0.5	mg/kg					
Benzo(k)fluoranthene	Chrysene	218-01-9	0.5	mg/kg					
Benzo(a)pyrene	Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indenot(1.2.3.cd)pyrene	Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene 53-70-3 0.5 mg/kg <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	Indeno(1.2.3.cd)pyrene	193-39-5		mg/kg					
A Sum of polycyclic aromatic hydrocarbons 0.5 mg/kg <0.5 <0.5 <0.5 <0.5 B Benzo(a)pyrene TEQ (zero) 0.5 mg/kg <0.5 <0.5 <0.5 <0.5 <0.5 B Benzo(a)pyrene TEQ (LOR) 0.5 mg/kg 0.6 0.0 0.0 0.0 0.0	Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
A Benzo(a)pryren TEQ (zero)	Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
A Benzo(a)pyrene TEQ (half LOR)	^ Sum of polycyclic aromatic hydrocarbor	ns	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
A Benzo(a)pyrene TEQ (LOR)	^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
PP080/071: Total Petroleum Hydrocarbons	^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
C6 - C9 Fraction	^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
C10 - C14 Fraction 50 mg/kg < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 5	EP080/071: Total Petroleum Hydrocar	bons							
C15 - C28 Fraction 100 mg/kg < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 <	C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C29 - C36 Fraction	C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum) 50 mg/kg < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 5	C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions C6 - C10 Fraction C6_C10 10 mg/kg <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C6 - C10 Fraction C6_C10 10 mg/kg <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
C6 - C10 Fraction C6_C10 10 mg/kg <10	EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
(F1) C10 - C16 Fraction S0 mg/kg <50	C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
(F1) C10 - C16 Fraction 50 mg/kg <50	^ C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C16 - C34 Fraction	(F1)	_							
>C34 - C40 Fraction	>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C40 Fraction (sum)	>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene	>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
(F2) EP080: BTEXN Benzene 71-43-2 0.2 mg/kg <0.2	^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
(F2) EP080: BTEXN Benzene 71-43-2 0.2 mg/kg <0.2	^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
Benzene 71-43-2 0.2 mg/kg <0.2									
Toluene 108-88-3 0.5 mg/kg <0.5	EP080: BTEXN								
	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene 100-41-4 0.5 mg/kg <0.5 <0.5 <0.5 <0.5 <0.5	Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
	Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene 108-38-3 106-42-3 0.5 mg/kg <0.5	meta- & para-Xylene		0.5		<0.5	<0.5	<0.5	<0.5	<0.5

Page : 13 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N3 0.9-1	TP-N4 0.1-0.2	TP-N5 0.05-0.1	TP-N6 0.1-0.2	TP-N7 0.05-0.1
		Sampli	ing date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-021	ES2234920-022	ES2234920-023	ES2234920-024	ES2234920-025
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	93.0	126	90.0	75.3	94.3
EP068S: Organochlorine Pesticio	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	88.4	94.1	85.8	72.2	83.9
EP068T: Organophosphorus Pes	ticide Surrogate							
DEF	78-48-8	0.05	%	94.6	99.6	103	80.4	92.9
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%	96.0	85.0	90.1	92.2	88.5
2-Chlorophenol-D4	93951-73-6	0.5	%	93.0	85.1	89.2	92.4	88.1
2.4.6-Tribromophenol	118-79-6	0.5	%	64.8	54.5	65.4	66.9	61.1
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	102	95.4	99.1	102	96.2
Anthracene-d10	1719-06-8	0.5	%	99.2	86.7	92.2	98.9	96.0
4-Terphenyl-d14	1718-51-0	0.5	%	101	95.2	99.9	106	96.6
EP080S: TPH(V)/BTEX Surrogate	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.9	81.6	87.2	90.2	87.9
Toluene-D8	2037-26-5	0.2	%	93.0	84.4	97.0	102	96.2
4-Bromofluorobenzene	460-00-4	0.2	%	89.9	86.1	90.1	96.4	94.1

Page : 14 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N8 0.05-0.1	N-D1	TP-S1 0.3-0.35	TP-S2 0.2-0.3	TP-S3 0.1-0.2
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-026	ES2234920-027	ES2234920-028	ES2234920-029	ES2234920-030
·				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		1.0	%	16.9	19.0	16.0	16.4	16.0
EG005(ED093)T: Total Metals by ICP	-AES							
Arsenic	7440-38-2	5	mg/kg	7	7	6	6	5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	14	18	12	12	24
Copper	7440-50-8	5	mg/kg	32	26	42	40	35
Lead	7439-92-1	5	mg/kg	8	28	10	11	14
Nickel	7440-02-0	2	mg/kg	13	12	12	11	22
Zinc	7440-66-6	5	mg/kg	58	78	78	79	71
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (F	PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 15 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N8 0.05-0.1	N-D1	TP-S1 0.3-0.35	TP-S2 0.2-0.3	TP-S3 0.1-0.2
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-026	ES2234920-027	ES2234920-028	ES2234920-029	ES2234920-030
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 16 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-N8 0.05-0.1	N-D1	TP-S1 0.3-0.35	TP-S2 0.2-0.3	TP-S3 0.1-0.2
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-026	ES2234920-027	ES2234920-028	ES2234920-029	ES2234920-030
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued						
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 17 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID		TP-N8 0.05-0.1	N-D1	TP-S1 0.3-0.35	TP-S2 0.2-0.3	TP-S3 0.1-0.2
		Sampli	ing date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-026	ES2234920-027	ES2234920-028	ES2234920-029	ES2234920-030
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	99.7	76.1	74.0	99.3	88.9
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	88.1	72.8	72.3	94.7	86.4
EP068T: Organophosphorus Pestici	ide Surrogate							
DEF	78-48-8	0.05	%	92.6	78.1	75.3	60.5	96.5
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.5	%	86.9	91.8	88.9	94.8	93.9
2-Chlorophenol-D4	93951-73-6	0.5	%	90.1	90.3	88.1	94.1	92.8
2.4.6-Tribromophenol	118-79-6	0.5	%	62.5	62.5	60.2	61.4	62.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	97.5	100	98.6	100	103
Anthracene-d10	1719-06-8	0.5	%	95.6	93.2	96.9	97.9	98.0
4-Terphenyl-d14	1718-51-0	0.5	%	98.8	99.8	98.4	100.0	99.6
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	97.2	74.4	80.6	77.1	78.0
Toluene-D8	2037-26-5	0.2	%	86.9	80.8	88.3	79.9	87.4
4-Bromofluorobenzene	460-00-4	0.2	%	76.0	77.3	84.8	81.2	84.0

Page : 18 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-S4	TP-S5	TP-S6	TP-S7	TP-S8
(Matrix: SOIL)				0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1
		Sampli	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-031	ES2234920-032	ES2234920-033	ES2234920-034	ES2234920-035
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	12.3	17.6	13.6	33.1	14.7
EG005(ED093)T: Total Metals by IC	P-AES							
Arsenic	7440-38-2	5	mg/kg	6	6	5	6	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	28	26	22	21	23
Copper	7440-50-8	5	mg/kg	30	35	30	30	31
Lead	7439-92-1	5	mg/kg	22	27	12	22	9
Nickel	7440-02-0	2	mg/kg	25	21	18	18	14
Zinc	7440-66-6	5	mg/kg	63	71	52	85	63
EG035T: Total Recoverable Mercu	rv bv FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls	(PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticide	s (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 19 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S4 0.1-0.2	TP-S5 0.1-0.2	TP-S6 0.1-0.2	TP-S7 0.1-0.2	TP-S8 0.05-0.1
		Samplii	ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-031	ES2234920-032	ES2234920-033	ES2234920-034	ES2234920-035
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aroma	atic Hydroca <u>rbons</u>							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 20 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S4	TP-S5	TP-S6	TP-S7	TP-S8
(Wath. Joil)				0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1
			ng date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-031	ES2234920-032	ES2234920-033	ES2234920-034	ES2234920-035
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons - Cont	inued						
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarl	bons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrod	carbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	150	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	140	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	290	<50
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	100	<100	200	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	150	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	100	<50	350	<50
^ >C10 - C16 Fraction minus Naphthale		50	mg/kg	<50	<50	<50	<50	<50
(F2)	*							
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 21 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-S4	TP-S5	TP-S6	TP-S7	TP-S8
(Matrix: SOIL)				0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1
		Sampli	ing date / time	29-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2234920-031	ES2234920-032	ES2234920-033	ES2234920-034	ES2234920-035
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	90.8	86.0	78.1	101	92.7
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	86.8	88.8	69.1	88.5	83.9
EP068T: Organophosphorus Pestici	ide Surrogate							
DEF	78-48-8	0.05	%	104	120	93.8	117	88.7
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.5	%	94.8	95.1	90.7	94.6	89.4
2-Chlorophenol-D4	93951-73-6	0.5	%	95.4	96.4	93.4	92.6	88.7
2.4.6-Tribromophenol	118-79-6	0.5	%	60.1	72.1	63.5	72.6	63.9
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	98.3	104	102	102	97.2
Anthracene-d10	1719-06-8	0.5	%	104	97.3	97.8	93.8	92.2
4-Terphenyl-d14	1718-51-0	0.5	%	103	100	100	97.8	94.9
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	80.0	85.6	81.6	74.9	82.1
Toluene-D8	2037-26-5	0.2	%	84.9	96.4	95.2	83.5	94.4
4-Bromofluorobenzene	460-00-4	0.2	%	78.8	89.3	87.7	76.5	87.0

Page : 22 of 27
Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-S9	TP-S10	S-D1		
(Matrix: SOIL)			Gap.G 12	0.1-0.2	0.1-0.2	0.1-0.2		
,		Samnlii	ng date / time	29-Sep-2022 00:00	29-Sep-2022 00:00	29-Sep-2022 00:00		
Compound	CAS Number	LOR	Unit	ES2234920-036	ES2234920-037	ES2234920-038		
Compound	CAS Number	LON	Orm					
	a. 4400a)			Result	Result	Result		
EA055: Moisture Content (Dried @ 1		4.0	0/	4= 4	044	4=0		
Moisture Content		1.0	%	15.4	24.1	17.8		
EG005(ED093)T: Total Metals by ICP					_			
Arsenic	7440-38-2	5	mg/kg	<5	<5	6		
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1		
Chromium	7440-47-3	2	mg/kg	28	13	24		
Copper	7440-50-8	5	mg/kg	30	44	34		
Lead	7439-92-1	5	mg/kg	14	12	22		
Nickel	7440-02-0	2	mg/kg	25	11	21		
Zinc	7440-66-6	5	mg/kg	60	90	67		
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1		
EP066: Polychlorinated Biphenyls (F	PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1		
EP068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05		
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05		
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05		
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05		
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05		
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05		

Page : 23 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Comparind CAS Number LOR Unit 29-Sep-2022 00:00 29-Sep-2022 00:00	Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S9	TP-S10	S-D1	
Compound CAS Number LOR Unit E82234920-056 E82234920-077 E82234920-038	(Mathin Coll)		0		0.1-0.2	0.1-0.2	0.1-0.2	
Result					·			
### SPORT OF CONTINUED ### SP	Compound	CAS Number	LOR	Unit				
4.4-OPT					Result	Result	Result	
Endink Natione \$3494.70.6 0.05 mg/kg 4.0.5 4.0.05 4.	EP068A: Organochlorine Pesticio	des (OC) - Continued						
Methosychlor		50-29-3		mg/kg				
As um of Aldrin + Dieldrin 308-00-260-87-1 0.05 mg/kg < 0.05	Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	
As un of DDD + DDE + DDT 72-84-872-55-915 0.05 mg/kg <0.05	Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	
Dichlorvos 02-73-7 0.05 mg/kg <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	
Dichiprove G2-73-7 O.05 mg/kg <0.05 <0.05 <0.05 <0.05	^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	
Dichlorose 62.73.7 0.05 mg/kg <0.05 <0.05 <0.05 <0.05		0-2						
Demeton-S-methyl	EP068B: Organophosphorus Pes	sticides (OP)						
Monocrotophos 6923-224 0.2 mg/kg <0.2 <0.2 <0.2 <0.2 <0.2	Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	
Dimethoate	Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Diazinon 333-41-5 0.05 mg/kg <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	
Chlorpyrifos-methyl 5598-13-0 0.05 mg/kg <0.05 <0.05 <0.05 <0.05 .	Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Parathion-methyl 298.00.0 0.2 mg/kg <0.2	Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Malathion 121-75-5 0.05 mg/kg < 0.05	Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	
Fenthion	Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	
Chlorpyrifos 2921-88-2 0.05 mg/kg <0.05 <0.05 <0.05	Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Parathion S6-38-2 0.2 mg/kg <0.2 <0.2 <0.2 <0.2	Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	
Pirimphos-ethyl 23505-41-1 0.05 mg/kg <0.05 <0.05 <0.05 <0.05	Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorfenvinphos 470-90-6 0.05 mg/kg <0.05	Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Bromophos-ethyl	Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	
Fenamiphos 22224-92-6 0.05 mg/kg <0.05 <0.05 <0.05 <0.05	Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Prothiofos 34643-46-4 0.05 mg/kg <0.05	Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Ethion 563-12-2 0.05 mg/kg <0.05	Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Ethion 563-12-2 0.05 mg/kg <0.05	Prothiofos		0.05	mg/kg	<0.05	<0.05	<0.05	
Carbophenothion 786-19-6 0.05 mg/kg <0.05	Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Azinphos Methyl 86-50-0 0.05 mg/kg <0.05	Carbophenothion		0.05	mg/kg	<0.05	<0.05	<0.05	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Naphthalene 91-20-3 0.5 mg/kg <0.5 <0.5 <0.5 <0.5	Azinphos Methyl		0.05	mg/kg	<0.05	<0.05	<0.05	
Naphthalene 91-20-3 0.5 mg/kg <0.5	FP075(SIM)B: Polynuclear Aroma						<u> </u>	
Acenaphthylene 208-96-8 0.5 mg/kg <0.5			0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthene 83-32-9 0.5 mg/kg <0.5	· ·							
Fluorene 86-73-7 0.5 mg/kg <0.5								
Phenanthrene 85-01-8 0.5 mg/kg <0.5	·							
Anthracene 120-12-7 0.5 mg/kg <0.5 <0.5 <0.5								
(Fluoranthene	Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	

Page : 24 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	TP-S9	TP-S10	S-D1		
(Matrix: SOIL)				0.1-0.2	0.1-0.2	0.1-0.2		
		Sampli	ng date / time	29-Sep-2022 00:00	29-Sep-2022 00:00	29-Sep-2022 00:00		
Compound	CAS Number	LOR	Unit	ES2234920-036	ES2234920-037	ES2234920-038		
				Result	Result	Result		
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued						
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6		
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2		
EP080/071: Total Petroleum Hydroc	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10		
C10 - C14 Fraction		50	mg/kg	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100		
C29 - C36 Fraction		100	mg/kg	<100	<100	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50		
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fraction	าร					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10		
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	****	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50		
^ >C10 - C16 Fraction minus Naphthaler	ne	50	mg/kg	<50	<50	<50		
(F2)			- "					
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5		

Page : 25 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP-S9	TP-S10	S-D1	
(Watrix: SOIL)				0.1-0.2	0.1-0.2	0.1-0.2	
		Sampli	ing date / time	29-Sep-2022 00:00	29-Sep-2022 00:00	29-Sep-2022 00:00	
Compound	CAS Number	LOR	Unit	ES2234920-036	ES2234920-037	ES2234920-038	
				Result	Result	Result	
EP080: BTEXN - Continued							
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	
EP066S: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1	%	114	104	101	
EP068S: Organochlorine Pesticide	Surrogate						
Dibromo-DDE	21655-73-2	0.05	%	103	95.5	94.4	
EP068T: Organophosphorus Pestio	cide Surrogate						
DEF	78-48-8	0.05	%	93.5	96.0	92.2	
EP075(SIM)S: Phenolic Compound	Surrogates						
Phenol-d6	13127-88-3	0.5	%	102	94.6	91.2	
2-Chlorophenol-D4	93951-73-6	0.5	%	101	95.0	91.4	
2.4.6-Tribromophenol	118-79-6	0.5	%	68.8	64.2	67.3	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	96.3	103	100	
Anthracene-d10	1719-06-8	0.5	%	102	99.8	96.3	
4-Terphenyl-d14	1718-51-0	0.5	%	106	104	98.3	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	79.8	75.6	84.0	
Toluene-D8	2037-26-5	0.2	%	88.5	87.2	99.7	
4-Bromofluorobenzene	460-00-4	0.2	%	82.9	83.8	91.4	

Page : 26 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Sub-Matrix: SUIL		
Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification	n of Asbestos in Soils	
EA200: Description	TP-N10.05-0.1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N20.05-0.1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N30.9-1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N40.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N50.05-0.1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N60.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N70.05-0.1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-N80.05-0.1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S10.3-0.35 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S20.2-0.3 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S30.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S40.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S50.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S60.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S70.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S80.05-0.1 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S90.1-0.2 - 29-Sep-2022 00:00	Soil sample.
EA200: Description	TP-S100.1-0.2 - 29-Sep-2022 00:00	Soil sample.

Page : 27 of 27 Work Order : ES2234920

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

ALS

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surroga	te		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surr	ogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surroga	ites		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

RESULTS OF SOIL ANALYSIS

2 samples supplied by Regional Geotechnical Solutions Pty Ltd on 30/09/2022. Lab Job No. N3232. Samples submitted by Louis Davidson. Your Job: RGS32576.1. 1/21 Cook Drive COFFS HARBOUR NSW 2450

	Method	Sample 1 N-T1 0.1-0.2m	Sample 2 S-T1 0.1-0.2m
	Job No.	N-11 U.1-U.2III N3232/1	N3232/2
	cos no.	7102027 7	110202,2
Arsenic (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	9	7
Lead (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	31	23
Cadmium (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	<0.5	<0.5
Chromium (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	19	26
Copper (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	29	35
оорро. (g, ку)	The fitting from digest. The first of Earlier line	_,	
Nickel (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	15	23
Zinc (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	96	73
Mercury (mg/kg)	1:3 Nitric/HCl digest - APHA 3125 ICPMS	<0.1	<0.1
PESTICIDE ANALYSIS SCREEN			
Hexachlorobenzene (HCB) (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Alpha BHC (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<0.1	<0.1
Lindane (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Heptachlor (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Aldrin (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Beta BHC (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Delta BHC (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Heptachlor epoxide (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
o,p'-DDE (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Alpha Endosulfan (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Gamma Chlordane (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Alpha Chlordane (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
trans-Nonachlor (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
o,p'-DDE (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Dieldrin (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Endrin (mg/kg)	Subcontracted: SGS report SE 237445	<0.2 <0.1	<0.2 <0.1
o,p'-DDD (mg/kg) o,p'-DDT (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<0.1	<0.1
Beta Endosulfan (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
p,p'-DDD (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
p,p'-DDT (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Endosulfan sulphate (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Endrin Aldehyde (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Methoxychlor (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Endrin Ketone (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
sodrin (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Mirex (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Total CLP OC Pesticides (mg/kg)	Subcontracted: SGS report SE 237445	<1	<1
Total OC VIC EPA (mg/kg)	Subcontracted: SGS report SE 237445	<1	<1
Dichlorvos (mg/kg)	Subcontracted: SGS report SE 237445	<0.5	<0.5
Dimethoate (mg/kg)	Subcontracted: SGS report SE 237445	<0.5	<0.5
Diazinon (Dimpylate) (mg/kg)	Subcontracted: SGS report SE 237445	<0.5	<0.5
Fenitrothion (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Malathion (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl) (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Parathion-ethyl (Parathion) (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Bromophos Ethyl (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Methidathion (mg/kg)	Subcontracted: SGS report SE 237445	<0.5	<0.5
Ethion (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Azinphos-methyl (Guthion) (mg/kg)	Subcontracted: SGS report SE 237445	<0.2 <1.7	<0.2 <1.7
Total OP Pesticides (mg/kg)	Subcontracted: SGS report SE 237445	\$1.7	<1.7
Arochlor 1016 (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Arochlor 1221 (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Arochlor 1232 (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Arochlor 1242 (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Arochlor 1248 (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Arochlor 1254 (mg/kg)	Subcontracted: SGS report SE 237445	<0.2	<0.2
Arochlor 1260 (mg/kg) Arochlor 1262 (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<0.2 <0.2	<0.2 <0.2
Arochlor 1262 (mg/kg) Arochlor 1268 (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<0.2	<0.2
Fotal PCBs (Arochlors) (mg/kg)	Subcontracted: SGS report SE 237445	<1	<1
Total 1 Obs (Alocinois) (ilig/kg)	Subcontracted, Soo report SE 207445	`'	``
HYDROCARBON ANALYSIS RESULTS BTEX			
Benzene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Foluene (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<0.1	<0.1
roluene (mg/kg) Ethylbenzene (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<0.1 <0.1	<0.1 <0.1
	· ·	<0.1	<0.1
m/p-xylene (mg/kg)	Subcontracted: SGS report SE 237445	<0.2 <0.1	<0.2 <0.1
o-xylene (mg/kg)	Subcontracted: SGS report SE 237445		
Fotal Xylenes (mg/kg)	Subcontracted: SGS report SE 237445	<0.3	<0.3
Total BTEX (mg/kg)	Subcontracted: SGS report SE 237445	<0.6	<0.6
Naphthalene (VOC) (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Total Recoverable Hydrocarbons			
Benzene (F0) (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
	Subcontracted: SGS report SE 237445	<20	<20
TRH C6-C9 (ma/ka)			
	Subcontracted: SGS report SF 237445	<25	<25
TRH C6-C9 (mg/kg) TRH C6-C10 (mg/kg) TRH C6-C10 minus BTEX (F1) (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<25 <25	<25 <25
	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<25 <25 <20	<25 <25 <20

RESULTS OF SOIL ANALYSIS

2 samples supplied by Regional Geotechnical Solutions Pty Ltd on 30/09/2022. Lab Job No. N3232.

Samples submitted by Louis Davidson. Your Job: RGS32576.1.

		Sample 1	Sample 2
	Method	N-T1 0.1-0.2m	S-T1 0.1-0.2m
	Job No.	N3232/1	N3232/2
TRH C29-C36 (mg/kg)	Subcontracted: SGS report SE 237445	<45	71
TRH C37-C40 (mg/kg)	Subcontracted: SGS report SE 237445	<100	<100
TRH >C10-C16 (mg/kg)	Subcontracted: SGS report SE 237445	<25	<25
TRH >C10-C16 - Naphthalene (F2) (mg/kg)	Subcontracted: SGS report SE 237445	<25	<25
TRH >C16-C34 (F3) (mg/kg)	Subcontracted: SGS report SE 237445	<90	96
TRH >C34-C40 (F4) (mg/kg)	Subcontracted: SGS report SE 237445 Subcontracted: SGS report SE 237445	<120	<120
11(17034-040 (14) (11g/kg)	Subcontracted, 363 report 3E 237443		-
TRH C10-C36 Total (mg/kg)	Subcontracted: SGS report SE 237445	<110	130
TRH >C10-C40 Total (F bands) (mg/kg)	Subcontracted: SGS report SE 237445	<210	<210
Polynuclear Aromatic Hydrocarbons (PAH)			
Naphthalene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
2-methylnaphthalene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
1-methylnaphthalene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Acenaphthylene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.1
Acenaphthene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Fluorene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Phenanthrene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Anthracene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Fluoranthene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.2
Pyrene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.3
Benzo(a)anthracene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.3
Chrysene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.3
Benzo(b&j)fluoranthene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.4
Benzo(k)fluoranthene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.2
Benzo(a)pyrene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.3
Indeno(1,2,3-cd)pyrene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.2
Dibenzo(ah)anthracene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	<0.1
Benzo(ghi)perylene (mg/kg)	Subcontracted: SGS report SE 237445	<0.1	0.2
Carcinogenic PAHs, BaP TEQ <lor=0 (mg="" (teq="" kg))<="" td=""><td>Subcontracted: SGS report SE 237445</td><td><0.2</td><td>0.4</td></lor=0>	Subcontracted: SGS report SE 237445	<0.2	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor (mg="" (teq="" kg))<="" td=""><td>Subcontracted: SGS report SE 237445</td><td><0.3</td><td>0.5</td></lor=lor>	Subcontracted: SGS report SE 237445	<0.3	0.5
Carcinogenic PAHs, BaP TEQ <lor=lor (mg="" (teq="" 2="" kg))<="" td=""><td>Subcontracted: SGS report SE 237445</td><td><0.2</td><td>0.5</td></lor=lor>	Subcontracted: SGS report SE 237445	<0.2	0.5
Total PAH (18) (mg/kg)	Subcontracted: SGS report SE 237445	<0.8	2.6
Total PAH (NEPM/WHO 16) (mg/kg)	Subcontracted: SGS report SE 237445	<0.8	2.6

Notes

- 1. ppm = mg/Kg dried sample
- 2. All results as dry weight DW samples were dried at 40oC for 24-48hrs prior to crushing and analysis.
- 3. Methods from Rayment and Lyons, Soil Chemical Methods Australasia
- 4. Metals analysed by ICP-MS (Inductively Coupled Plasma Mass Spectrometry)
- 5. In SGS Pesticide Analysis Screening the following pesticides are included:
 - Organochlorine pesticide (OC's) screen: (HCB, alpha-BHC, gamma-BHC, Lindane, Heptachlor, Aldrin, beta-BHC, delta-BHC, Heptachlor epoxide, op-DDE, alpha-Endosulfan, alpha-Chlordane, trans-Nonachlor,

pp-DDD, pp-DDT, Endosulfan sulphate, Endrin Aldehyde, Methoxychlor, Endrin Ketone, Isodrin, Mirex)
(Diazinon, Dimethoate, Dichlorvos, Fenitrothion, Malathion, Chlorpyrifos Ethyl, Parathion Ethyl, Bromophos Ethyl, Methidathion, Anzinphos-methyl (Guthion), Ethion)

- Organophosphorus pesticide (OP's) screen: (Diazinon, I 6. Analysis conducted between sample arrival date and reporting date.
- 7. ** NATA accreditation does not cover the performance of this service.
- 8. .. Denotes not requested.
- 9. This report is not to be reproduced except in full.
- 10. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer SCU.edu.au/eal/t&cs or on request).
- 11. Results relate only to the samples tested.
- 12. This report was issued on 13/10/2022.

Appendix D

Letter from Dr David Tully CEnvP SC

Contaminated Land Solutions

23 February 2023

Ref: CLS0177.L08

Regional Geotechnical Solutions Pty Ltd 2 Murray Circuit Mayfield West NSW 2304

For the attention of Louis Davidson

Dear Louis,

RE: Report Review Stage 1 & Stage 2 Site Contamination Assessment –Tamworth Health Service Redevelopment: On-grade Carparks, Dean Street, Tamworth

I, Dr David Tully of Contaminated Land Solutions Pty Ltd, am a Certified Environmental Practitioner Site Contamination Specialist (General Certified Environmental Practitioner certification no. 1138 and Site Contamination Specialist certification no. SC40084).

I confirm I have reviewed the Regional Geotechnical Solutions report entitled "Stage 1 & Stage 2 Site Contamination Assessment – *Tamworth Health Service Redevelopment: On-grade Carparks, Dean Street, Tamworth*" (Ref: RGS32576.1-AR Rev.1), dated 22 February 2023 and a copy of which I have retained.

I can confirm that on the basis of the information contained within the report, I support the conclusions and recommendations provided therein.

Should the client, regulator or local authority have any queries regarding the report review, I can be contacted by e-mail via david.tully@contaminatedlandsolutions.com.au. Specific queries regarding the content of the report should be addressed to Louis Davidson at Regional Geotechnical Solutions.

For and on behalf of

Contaminated Land Solutions Pty Ltd

Dr David Tully CEnvP SC

Director

Contaminated Land Solutions Pty Ltd

Contaminated Land Solutions Pty Ltd 10 Heath Road Crafers West SA 5152 0410 012 292